78 research outputs found

    Extracting surface rotation periods of solar-like Kepler targets

    Full text link
    We use various method to extract surface rotation periods of Kepler targets exhibiting solar-like oscillations and compare their results.Comment: Proceedings of the CoRoT3-KASC7 Conference. 2 pages, 1 figur

    Understanding angular momentum transport in red giants: the case of KIC 7341231

    Get PDF
    Context. Thanks to recent asteroseismic observations, it has been possible to infer the radial differential rotation profile of subgiants and red giants. Aims. We want to reproduce through modeling the observed rotation profile of the early red giant KIC 7341231 and constrain the physical mechanisms responsible for angular momentum transport in stellar interiors. Methods. We compute models of KIC 7341231 including a treatment of shellular rotation and we compare the rotation profiles obtained with the one derived by Deheuvels et al. (2012). We then modify some modeling parameters in order to quantify their effect on the obtained rotation profile. Moreover, we mimic a powerful angular momentum transport during the Main Sequence and study its effect on the evolution of the rotation profile during the subgiant and red giant phases. Results. We show that meridional circulation and shear mixing alone produce a rotation profile for KIC 7341231 too steep compared to the observed one. An additional mechanism is then needed to increase the internal transport of angular momentum. We find that this undetermined mechanism has to be efficient not only during the Main Sequence but also during the much quicker subgiant phase. Moreover, we point out the importance of studying the whole rotational history of a star in order to explain its rotation profile during the red giant evolution.Comment: 8 pages, 8 figures, 5 table

    Investigating magnetic activity of F stars with the it Kepler mission

    Full text link
    The dynamo process is believed to drive the magnetic activity of stars like the Sun that have an outer convection zone. Large spectroscopic surveys showed that there is a relation between the rotation periods and the cycle periods: the longer the rotation period is, the longer the magnetic activity cycle period will be. We present the analysis of F stars observed by Kepler for which individual p modes have been measure and with surface rotation periods shorter than 12 days. We defined magnetic indicators and proxies based on photometric observations to help characterise the activity levels of the stars. With the Kepler data, we investigate the existence of stars with cycles (regular or not), stars with a modulation that could be related to magnetic activity, and stars that seem to show a flat behaviour.Comment: 2 pages, 1 figure, proceedings of IAU Symposium 302 'Magnetic fields through stellar evolution', 25-30 August 2013, Biarritz, Franc
    • …
    corecore