804 research outputs found

    The Development and Assay of an S-Phase Synchronized Cell System Using Skin Fibroblast Cultures of the Indian Muntjac

    Get PDF
    An in vitro mammalian cell system which enables direct observation of DNA replication forks is essential to the study and understanding of the mammalian cell cycle S-phase. The prerequisite work of establishing S-phase synchronized cell cultures and an assessment of synchrony levels attained is the object of this study. Skin fibroblasts of the male Indian muntjac line which possesses large chromosomes and a low diploid number were selected for this work. Initial block-release experiments using mitosis as an assay point indicated that 1.5 mM hydroxyurea provided marked levels of synchrony in the absence of detectable cytotoxicity. Premature chromosome condensation patterns of interphase cells fused with mitotic cells indicated a substantially higher S-phase portion of cell populations subjected to hydroxyurea block-release. This was observed in contrast to lower S-phase portions in non-treated controls. These results were supported autoradiographic assays which showed a higher percentage of 3H-thymidine-labeled nuclei in hydroxyurea-treated populations than in controls. It is expected that large quantities of prematurely condensed replicating chromosomes as obtained by this synchronized fusion method would effectively expose sites of DNA replication forks under the electron microscope. This would allow DNA synthesis to be more completely quantified and characterized under normal conditions as well as under conditions which alter this critical phase

    Brg1 chromatin remodeling factor is involved in cell growth arrest, apoptosis and senescence of rat mesenchymal stem cells.

    Get PDF
    Self-renewal, proliferation and differentiation properties of stem cells are controlled by key transcription factors. However, their activity is modulated by chromatin remodeling factors that operate at the highest hierarchical level. Studies on these factors can be especially important to dissect molecular pathways governing the biology of stem cells. SWI/SNF complexes are adenosine triphosphate (ATP)-dependent chromatin remodeling enzymes that have been shown to be required for cell cycle control, apoptosis and cell differentiation in several biological systems. The aim of our research was to investigate the role of these complexes in the biology of mesenchymal stem cells (MSCs). To this end, in MSCs we caused a forced expression of the ATPase subunit of SWI/SNF (Brg1 – also known as Smarca4) by adenoviral transduction. Forced Brg1 expression induced a significant cell cycle arrest of MSCs in culture. This was associated with a huge increase in apoptosis that reached a peak 3 days after transduction. In addition, we observed signs of senescence in cells having ectopic Brg1 expression. At the molecular level these phenomena were associated with activation of Rb- and p53-related pathways. Inhibition of either p53 or Rb with E1A mutated proteins allowed us to hypothesize that both Rb and p53 are indispensable for Brg1-induced senescence, whereas only p53 seems to play a role in triggering programmed cell death. We also looked at the effects of forced Brg1 expression on canonical MSC differentiation in adipocytes, chondrocytes and osteocytes. Brg1 did not induce cell differentiation per se; however, this protein could contribute, at least in part, to the adipocyte differentiation process. In conclusion, our results suggest that whereas some ATP-dependent chromatin remodeling factors, such as ISWI complexes, promote stem cell self-renewal and conservation of an uncommitted state, others cause an escape from ‘stemness’ and induction of differentiation along with senescence and cell death phenomena

    Primary and malignant cholangiocytes undergo CD40 mediated Fas dependent Apoptosis, but are insensitive to direct activation with exogenous fas ligand

    Get PDF
    Introduction Cholangiocarcinoma is a rare malignancy of the biliary tract, the incidence of which is rising, but the pathogenesis of which remains uncertain. No common genetic defects have been described but it is accepted that chronic inflammation is an important contributing factor. We have shown that primary human cholangiocyte and hepatocyte survival is tightly regulated via co-operative interactions between two tumour necrosis family (TNF) receptor family members; CD40 and Fas (CD95). Functional deficiency of CD154, the ligand for CD40, leads to a failure of clearance of biliary tract infections and a predisposition to cholangiocarcinoma implying a direct link between TNF receptor-mediated apoptosis and the development of cholangiocarcinoma. Aims To determine whether malignant cholangiocytes display defects in CD40 mediated apoptosis. By comparing CD40 and Fas-mediated apoptosis and intracellular signalling in primary human cholangiocytes and three cholangiocyte cell lines. Results Primary cholangiocytes and cholangiocyte cell lines were relatively insensitive to direct Fas-mediated killing with exogenous FasL when compared with Jurkat cells, which readily underwent Fas-mediated apoptosis, but were extremely sensitive to CD154 stimulation. The sensitivity of cells to CD40 activation was similar in magnitude in both primary and malignant cells and was STAT-3 and AP-1 dependent in both. Conclusions 1) Both primary and malignant cholangiocytes are relatively resistant to Fas–mediated killing but show exquisite sensitivity to CD154, suggesting that the CD40 pathway is intact and fully functional in both primary and malignant cholangiocytes 2) The relative insensitivity of cholangiocytes to Fas activation demonstrates the importance of CD40 augmentation of Fas dependent death in these cells. Agonistic therapies which target CD40 and associated intracellular signalling pathways may be effective in promoting apoptosis of malignant cholangiocytes

    Minimal residual disease negativity by next-generation flow cytometry is associated with improved organ response in AL amyloidosis

    Get PDF
    Light chain (AL) amyloidosis is caused by a small B-cell clone producing light chains that form amyloid deposits and cause organ dysfunction. Chemotherapy aims at suppressing the production of the toxic light chain (LC) and restore organ function. However, even complete hematologic response (CR), defined as negative serum and urine immunofixation and normalized free LC ratio, does not always translate into organ response. Next-generation flow (NGF) cytometry is used to detect minimal residual disease (MRD) in multiple myeloma. We evaluated MRD by NGF in 92 AL amyloidosis patients in CR. Fifty-four percent had persistent MRD (median 0.03% abnormal plasma cells). There were no differences in baseline clinical variables in patients with or without detectable MRD. Undetectable MRD was associated with higher rates of renal (90% vs 62%, p = 0.006) and cardiac response (95% vs 75%, p = 0.023). Hematologic progression was more frequent in MRD positive (0 vs 25% at 1 year, p = 0.001). Altogether, NGF can detect MRD in approximately half the AL amyloidosis patients in CR, and persistent MRD can explain persistent organ dysfunction. Thus, this study supports testing MRD in CR patients, especially if not accompanied by organ response. In case MRD persists, further treatment could be considered, carefully balancing residual organ damage, patient frailty, and possible toxicity

    Fc receptor-like 5 and anti-CD20 treatment response in granulomatosis with polyangiitis and microscopic polyangiitis

    Get PDF
    BACKGROUND. Baseline expression of FCRL5, a marker of naive and memory B cells, was shown to predict response to rituximab (RTX) in rheumatoid arthritis. This study investigated baseline expression of FCRL5 as a potential biomarker of clinical response to RTX in granulomatosis with polyangiitis (CPA) and microscopic polyangiitis (MPA). METHODS. A previously validated quantitative PCR-based (qPCR-based) platform was used to assess FCRL5 expression in patients with GPA/MPA (RAVE trial, NCT00104299). RESULTS. Baseline FCRL5 expression was significantly higher in patients achieving complete remission (CR) at 6,12, and 18 months, independent of other clinical and serological variables, among those randomized to RTX but not cyclophosphamide-azathioprine (CYC/AZA). Patients with baseline FCRL5 expression >= 0.01 expression units (termed FCRL5(hi)) exhibited significantly higher CR rates at 6,12, and 18 months as compared with FCRL5(lo) subjects (84% versus 57% [P = 0.016], 68% versus 40% [P = 0.02], and 68% versus 29% [P = 0.0009], respectively). CONCLUSION. Our data taken together suggest that FCRL5 is a biomarker of B cell lineage associated with increased achievement and maintenance of complete remission among patients treated with RTX and warrant further investigation in a prospective manner

    Genome-wide mega-analysis identifies 16 loci and highlights diverse biological mechanisms in the common epilepsies

    Get PDF
    sem informaçãoThe epilepsies affect around 65 million people worldwide and have a substantial missing heritability component. We report a genome-wide mega-analysis involving 15,212 individuals with epilepsy and 29,677 controls, which reveals 16 genome-wide significant91sem informaçãosem informaçãosem informaçã

    Comparison of Evaluations for Heart Transplant Before Durable Left Ventricular Assist Device and Subsequent Receipt of Transplant at Transplant vs Nontransplant Centers

    Get PDF
    IMPORTANCE: In 2020, the Centers for Medicare & Medicaid Services revised its national coverage determination, removing the requirement to obtain review from a Medicare-approved heart transplant center to implant a durable left ventricular assist device (LVAD) for bridge-to-transplant (BTT) intent at an LVAD-only center. The association between center-level transplant availability and access to heart transplant, the gold-standard therapy for advanced heart failure (HF), is unknown. OBJECTIVE: To investigate the association of center transplant availability with LVAD implant strategies and subsequent heart transplant following LVAD implant before the Centers for Medicare & Medicaid Services policy change. DESIGN, SETTING, AND PARTICIPANTS: A retrospective cohort study of the Society of Thoracic Surgeons Intermacs multicenter US registry database was conducted from April 1, 2012, to June 30, 2020. The population included patients with HF receiving a primary durable LVAD. EXPOSURES: LVAD center transplant availability (LVAD/transplant vs LVAD only). MAIN OUTCOMES AND MEASURES: The primary outcomes were implant strategy as BTT and subsequent transplant by 2 years. Covariates that might affect listing strategy and outcomes were included (eg, patient demographic characteristics, comorbidities) in multivariable models. Parameters for BTT listing were estimated using logistic regression with center-level random effects and for receipt of a transplant using a Cox proportional hazards regression model with death as a competing event. RESULTS: The sample included 22 221 LVAD recipients with a median age of 59.0 (IQR, 50.0-67.0) years, of whom 17 420 (78.4%) were male and 3156 (14.2%) received implants at LVAD-only centers. Receiving an LVAD at an LVAD/transplant center was associated with a 79% increased adjusted odds of BTT LVAD designation (odds ratio, 1.79; 95% CI, 1.35-2.38; P \u3c .001). The 2-year transplant rate following LVAD implant was 25.6% at LVAD/transplant centers and 11.9% at LVAD-only centers. There was an associated 33% increased rate of transplant at LVAD/transplant centers compared with LVAD-only centers (adjusted hazard ratio, 1.33; 95% CI, 1.17-1.51) with a similar hazard for death at 2 years (adjusted hazard ratio, 0.99; 95% CI, 0.90-1.08). CONCLUSIONS AND RELEVANCE: Receiving an LVAD at an LVAD-transplant center was associated with increased odds of BTT intent at implant and subsequent transplant receipt for patients at 2 years. The findings of this study suggest that Centers for Medicare & Medicaid Services policy change may have the unintended consequence of further increasing inequities in access to transplant among patients at LVAD-only centers

    Lateralizing Value of Interictal Spikes on Overnight Sleep-EEG Studies in Temporal Lobe Epilepsy

    Full text link
    Purpose: To determine the lateralizing value of interictal epileptiform discharges (IEDs) recorded during overnight sleep-EEG studies in temporal lobe epilepsy. Because IEDs are more prevalent in non-rapid eye movement (NREM) sleep than in wakefulness, overnight sleep-EEG recordings may contribute additional lateralizing information to the epilepsy surgery evaluation beyond daytime EEGs. Methods: Twenty-four subjects with medically refractory temporal lobe epilepsy underwent continuous overnight sleep-EEG recordings. Subjects were seizure free ≤24 h before study and receiving stable doses of medication. The IED foci recorded on overnight studies were compared with daytime EEGs, interictal samples, and ictal recordings during long-term monitoring, brain magnetic resonance images (MRIs), and surgical outcome. Results: (a) In all 24 subjects, including 13 without IEDs on daytime EEGs, temporal IEDs were present during NREM sleep and were exclusively or predominantly (<95%) unilateral in 15 and bitemporal in nine. (b) Unilateral NREM IEDs were concordant with surface or depth ictal-onset regions in 14 subjects, even if MRIs were normal (three subjects) or surface ictal-onset regions were bilateral (five subjects). Eleven of 12 subjects with unilateral concordant NREM IEDs who have undergone surgery are seizure free. (c) Bitemporal IEDs were associated with postoperative seizures in all subjects with normal MRIs or widespread MRI abnormalities. However, all subjects with bitemporal IEDs and MRI hippocampal abnormalities concordant with ictal-onset regions had good to excellent surgical outcomes. Conclusions: When combined with other investigations, IEDs recorded on overnight studies add prognostic data to the epilepsy surgery evaluation not provided by daytime EEGs.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66154/1/j.1528-1157.1999.tb02044.x.pd
    corecore