61 research outputs found

    Protein Glycosylation in Helicobacter pylori: Beyond the Flagellins?

    Get PDF
    Glycosylation of flagellins by pseudaminic acid is required for virulence in Helicobacter pylori. We demonstrate that, in H. pylori, glycosylation extends to proteins other than flagellins and to sugars other than pseudaminic acid. Several candidate glycoproteins distinct from the flagellins were detected via ProQ-emerald staining and DIG- or biotin- hydrazide labeling of the soluble and outer membrane fractions of wild-type H. pylori, suggesting that protein glycosylation is not limited to the flagellins. DIG-hydrazide labeling of proteins from pseudaminic acid biosynthesis pathway mutants showed that the glycosylation of some glycoproteins is not dependent on the pseudaminic acid glycosylation pathway, indicating the existence of a novel glycosylation pathway. Fractions enriched in glycoprotein candidates by ion exchange chromatography were used to extract the sugars by acid hydrolysis. High performance anion exchange chromatography with pulsed amperometric detection revealed characteristic monosaccharide peaks in these extracts. The monosaccharides were then identified by LC-ESI-MS/MS. The spectra are consistent with sugars such as 5,7-diacetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-nonulosonic acid (Pse5Ac7Ac) previously described on flagellins, 5-acetamidino-7-acetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-nonulosonic acid (Pse5Am7Ac), bacillosamine derivatives and a potential legionaminic acid derivative (Leg5AmNMe7Ac) which were not previously identified in H. pylori. These data open the way to the study of the mechanism and role of protein glycosylation on protein function and virulence in H. pylori

    Energy expenditure of rugby players during a 14-day in-season period, measured using doubly labelled water.

    Get PDF
    Criterion data for total energy expenditure (TEE) in elite rugby are lacking, which prediction equations may not reflect accurately. This study quantified TEE of 27 elite male rugby league (RL) and rugby union (RU) players (U16, U20, U24 age groups) during a 14-day in-season period using doubly labelled water (DLW). Measured TEE was also compared to estimated, using prediction equations. Resting metabolic rate (RMR) was measured using indirect calorimetry, and physical activity level (PAL) estimated (TEE:RMR). Differences in measured TEE were unclear by code and age (RL, 4369 ± 979; RU, 4365 ± 1122; U16, 4010 ± 744; U20, 4414 ± 688; U24, 4761 ± 1523 Kcal.day-1). Differences in PAL (overall mean 2.0 ± 0.4) were unclear. Very likely differences were observed in RMR by code (RL, 2366 ± 296; RU, 2123 ± 269 Kcal.day-1). Differences in relative RMR between U20 and U24 were very likely (U16, 27 ± 4; U20, 23 ± 3; U24, 26 ± 5 Kcal.kg-1.day-1). Differences were observed between measured and estimated TEE, using Schofield, Cunningham and Harris-Benedict equations for U16 (187 ± 614, unclear; -489 ± 564, likely and -90 ± 579, unclear Kcal.day-1), U20 (-449 ± 698, likely; -785 ± 650, very likely and -452 ± 684, likely Kcal.day-1) and U24 players (-428 ± 1292; -605 ± 1493 and -461 ± 1314 Kcal.day-1, all unclear). Rugby players have high TEE, which should be acknowledged. Large inter-player variability in TEE was observed demonstrating heterogeneity within groups, thus published equations may not appropriately estimate TEE

    Prevalence of Achilles and patellar tendinopathy and their association to intratendinous changes in adolescent athletes

    No full text
    Achilles (AT) and patellar tendons (PT) are commonly affected by tendinopathy in adult athletes but prevalence of symptoms and morphological changes in adolescents is unclear. The study aimed to determine prevalence of tendinopathy and intratendinous changes in ATs and PTs of adolescent athletes. A total of 760 adolescent athletes (13.0 ± 1.9 years; 160 ± 13 cm; 50 ± 14 kg) were examined. History, local clinical examination, and longitudinal Doppler ultrasound analysis for both ATs and PTs were performed including identification of intratendinous echoic changes and vascularization. Diagnosis of tendinopathy was complied clinically in case of positive history of tendon pain and tendon pain on palpation. Achilles tendinopathy was diagnosed in 1.8% and patellar tendinopathy in 5.8%. Vascularizations were visible in 3.0% of ATs and 11.4% of PTs, hypoechogenicities in 0.7% and 3.2% as well as hyperechogenicities in 0% and 0.3%, respectively. Vascularizations and hypoechogenicities were statistically significantly more often in males than in females (P ≤ 0.02). Subjects with patellar tendinopathy had higher prevalence of structural intratendinous changes than those without PT symptoms (P ≤ 0.001). In adolescent athletes, patellar tendinopathy is three times more frequent compared with Achilles tendinopathy. Longitudinal studies are necessary to investigate physiological or pathological origin of vascularizations and its predictive value in development of tendinopathy

    Amycolatopsis nigrescens sp. nov., an actinomycete isolated from a Roman catacomb

    Get PDF
    The taxonomic status of two actinomycetes isolated from the wall of a hypogean Roman catacomb was established based on a polyphasic investigation. The organisms were found to have chemical and morphological markers typical of members of the genus Amycolatopsis. They also shared a range of chemical, molecular and phenotypic markers which served to separate them from representatives of recognized Amycolatopsis species. The new isolates formed a branch in the Amycolatopsis 16S rRNA gene sequence tree with Amycolatopsis minnesotensis NRRL B-24435T, but this association was not supported by a particularly high bootstrap value or by the product of the maximum-parsimony tree-making algorithm. The organisms were distinguished readily from closely related Amycolatopsis species based on a combination of phenotypic properties and from all Amycolatopsis strains by their characteristic menaquinone profiles, in which tetra-hydrogenated menaquinones with 11 isoprene units predominated. The combined genotypic and phenotypic data indicate that the isolates merit recognition as representing a novel species of the genus Amycolatopsis. The name proposed for this novel species is Amycolatopsis nigrescens sp. nov., with type strain CSC17Ta-90T (= HKI 0330T = DSM 44992T = NRRL B-24473T).This work was supported by the European Commission Energy, Environment and Sustainable Development Programme (contract EVK4-CT-2000-00028).Peer Reviewe
    • …
    corecore