1,850 research outputs found

    First measurement of Ξc0\Xi_{\rm c}^0 production in pp collisions at s\mathbf{\sqrt{s}} = 7 TeV

    Full text link
    The production of the charm-strange baryon Ξc0\Xi_{\rm c}^0 is measured for the first time at the LHC via its semileptonic decay into e+Ξνe^+\Xi^-\nu_{\rm e} in pp collisions at s=7\sqrt{s}=7 TeV with the ALICE detector. The transverse momentum (pTp_{\rm T}) differential cross section multiplied by the branching ratio is presented in the interval 1 << pTp_{\rm T} << 8 GeV/cc at mid-rapidity, y|y| << 0.5. The transverse momentum dependence of the Ξc0\Xi_{\rm c}^0 baryon production relative to the D0^0 meson production is compared to predictions of event generators with various tunes of the hadronisation mechanism, which are found to underestimate the measured cross-section ratio.Comment: 22 pages, 6 captioned figures, 1 table, authors from page 17, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/412

    Measurement of an excess in the yield of J/ψ\psi at very low pTp_{\rm T} in Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV

    Full text link
    We report on the first measurement of an excess in the yield of J/ψ\psi at very low transverse momentum (pT<0.3p_{\rm T}< 0.3 GeV/cc) in peripheral hadronic Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV, performed by ALICE at the CERN LHC. Remarkably, the measured nuclear modification factor of J/ψ\psi in the rapidity range 2.5<y<42.5<y<4 reaches about 7 (2) in the pTp_{\rm T} range 0-0.3 GeV/cc in the 70-90% (50-70%) centrality class. The J/ψ\psi production cross section associated with the observed excess is obtained under the hypothesis that coherent photoproduction of J/ψ\psi is the underlying physics mechanism. If confirmed, the observation of J/ψ\psi coherent photoproduction in Pb-Pb collisions at impact parameters smaller than twice the nuclear radius opens new theoretical and experimental challenges and opportunities. In particular, coherent photoproduction accompanying hadronic collisions may provide insight into the dynamics of photoproduction and nuclear reactions, as well as become a novel probe of the Quark-Gluon Plasma.Comment: 18 pages, 3 captioned figures, 1 table, authors from page 13, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/191

    Measurement of pion, kaon and proton production in proton-proton collisions at s=7\sqrt{s}=7 TeV

    Full text link
    The measurement of primary π±\pi^{\pm}, K±^{\pm}, p and p\overline{p} production at mid-rapidity (y<|y| < 0.5) in proton-proton collisions at s=7\sqrt{s} = 7 TeV performed with ALICE (A Large Ion Collider Experiment) at the Large Hadron Collider (LHC) is reported. Particle identification is performed using the specific ionization energy loss and time-of-flight information, the ring-imaging Cherenkov technique and the kink-topology identification of weak decays of charged kaons. Transverse momentum spectra are measured from 0.1 up to 3 GeV/cc for pions, from 0.2 up to 6 GeV/cc for kaons and from 0.3 up to 6 GeV/cc for protons. The measured spectra and particle ratios are compared with QCD-inspired models, tuned to reproduce also the earlier measurements performed at the LHC. Furthermore, the integrated particle yields and ratios as well as the average transverse momenta are compared with results at lower collision energies.Comment: 33 pages, 19 captioned figures, 3 tables, authors from page 28, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/156

    Constraining the magnitude of the Chiral Magnetic Effect with Event Shape Engineering in Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76$ TeV

    Full text link
    In ultrarelativistic heavy-ion collisions, the event-by-event variation of the elliptic flow v2v_2 reflects fluctuations in the shape of the initial state of the system. This allows to select events with the same centrality but different initial geometry. This selection technique, Event Shape Engineering, has been used in the analysis of charge-dependent two- and three-particle correlations in Pb-Pb collisions at sNN=2.76\sqrt{s_{_{\rm NN}}} =2.76 TeV. The two-particle correlator cos(φαφβ)\langle \cos(\varphi_\alpha - \varphi_\beta) \rangle, calculated for different combinations of charges α\alpha and β\beta, is almost independent of v2v_2 (for a given centrality), while the three-particle correlator cos(φα+φβ2Ψ2)\langle \cos(\varphi_\alpha + \varphi_\beta - 2\Psi_2) \rangle scales almost linearly both with the event v2v_2 and charged-particle pseudorapidity density. The charge dependence of the three-particle correlator is often interpreted as evidence for the Chiral Magnetic Effect (CME), a parity violating effect of the strong interaction. However, its measured dependence on v2v_2 points to a large non-CME contribution to the correlator. Comparing the results with Monte Carlo calculations including a magnetic field due to the spectators, the upper limit of the CME signal contribution to the three-particle correlator in the 10-50% centrality interval is found to be 26-33% at 95% confidence level.Comment: 20 pages, 6 captioned figures, 1 tables, authors from page 15, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/382

    The International Workshop on Osteoarthritis Imaging Knee MRI Segmentation Challenge: A Multi-Institute Evaluation and Analysis Framework on a Standardized Dataset

    Full text link
    Purpose: To organize a knee MRI segmentation challenge for characterizing the semantic and clinical efficacy of automatic segmentation methods relevant for monitoring osteoarthritis progression. Methods: A dataset partition consisting of 3D knee MRI from 88 subjects at two timepoints with ground-truth articular (femoral, tibial, patellar) cartilage and meniscus segmentations was standardized. Challenge submissions and a majority-vote ensemble were evaluated using Dice score, average symmetric surface distance, volumetric overlap error, and coefficient of variation on a hold-out test set. Similarities in network segmentations were evaluated using pairwise Dice correlations. Articular cartilage thickness was computed per-scan and longitudinally. Correlation between thickness error and segmentation metrics was measured using Pearson's coefficient. Two empirical upper bounds for ensemble performance were computed using combinations of model outputs that consolidated true positives and true negatives. Results: Six teams (T1-T6) submitted entries for the challenge. No significant differences were observed across all segmentation metrics for all tissues (p=1.0) among the four top-performing networks (T2, T3, T4, T6). Dice correlations between network pairs were high (>0.85). Per-scan thickness errors were negligible among T1-T4 (p=0.99) and longitudinal changes showed minimal bias (<0.03mm). Low correlations (<0.41) were observed between segmentation metrics and thickness error. The majority-vote ensemble was comparable to top performing networks (p=1.0). Empirical upper bound performances were similar for both combinations (p=1.0). Conclusion: Diverse networks learned to segment the knee similarly where high segmentation accuracy did not correlate to cartilage thickness accuracy. Voting ensembles did not outperform individual networks but may help regularize individual models.Comment: Submitted to Radiology: Artificial Intelligence; Fixed typo

    Multiplicity dependence of jet-like two-particle correlations in p-Pb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV

    Full text link
    Two-particle angular correlations between unidentified charged trigger and associated particles are measured by the ALICE detector in p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum range 0.7 <pT,assoc<pT,trig< < p_{\rm{T}, assoc} < p_{\rm{T}, trig} < 5.0 GeV/cc is examined, to include correlations induced by jets originating from low momen\-tum-transfer scatterings (minijets). The correlations expressed as associated yield per trigger particle are obtained in the pseudorapidity range η<0.9|\eta|<0.9. The near-side long-range pseudorapidity correlations observed in high-multiplicity p-Pb collisions are subtracted from both near-side short-range and away-side correlations in order to remove the non-jet-like components. The yields in the jet-like peaks are found to be invariant with event multiplicity with the exception of events with low multiplicity. This invariance is consistent with the particles being produced via the incoherent fragmentation of multiple parton--parton scatterings, while the yield related to the previously observed ridge structures is not jet-related. The number of uncorrelated sources of particle production is found to increase linearly with multiplicity, suggesting no saturation of the number of multi-parton interactions even in the highest multiplicity p-Pb collisions. Further, the number scales in the intermediate multiplicity region with the number of binary nucleon-nucleon collisions estimated with a Glauber Monte-Carlo simulation.Comment: 23 pages, 6 captioned figures, 1 table, authors from page 17, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/161

    Multi-particle azimuthal correlations in p-Pb and Pb-Pb collisions at the CERN Large Hadron Collider

    Full text link
    Measurements of multi-particle azimuthal correlations (cumulants) for charged particles in p-Pb and Pb-Pb collisions are presented. They help address the question of whether there is evidence for global, flow-like, azimuthal correlations in the p-Pb system. Comparisons are made to measurements from the larger Pb-Pb system, where such evidence is established. In particular, the second harmonic two-particle cumulants are found to decrease with multiplicity, characteristic of a dominance of few-particle correlations in p-Pb collisions. However, when a Δη|\Delta \eta| gap is placed to suppress such correlations, the two-particle cumulants begin to rise at high-multiplicity, indicating the presence of global azimuthal correlations. The Pb-Pb values are higher than the p-Pb values at similar multiplicities. In both systems, the second harmonic four-particle cumulants exhibit a transition from positive to negative values when the multiplicity increases. The negative values allow for a measurement of v2{4}v_{2}\{4\} to be made, which is found to be higher in Pb-Pb collisions at similar multiplicities. The second harmonic six-particle cumulants are also found to be higher in Pb-Pb collisions. In Pb-Pb collisions, we generally find v2{4}v2{6}0v_{2}\{4\} \simeq v_{2}\{6\}\neq 0 which is indicative of a Bessel-Gaussian function for the v2v_{2} distribution. For very high-multiplicity Pb-Pb collisions, we observe that the four- and six-particle cumulants become consistent with 0. Finally, third harmonic two-particle cumulants in p-Pb and Pb-Pb are measured. These are found to be similar for overlapping multiplicities, when a Δη>1.4|\Delta\eta| > 1.4 gap is placed.Comment: 25 pages, 11 captioned figures, 3 tables, authors from page 20, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/87

    The KNee OsteoArthritis Prediction (KNOAP2020) challenge:An image analysis challenge to predict incident symptomatic radiographic knee osteoarthritis from MRI and X-ray images

    Get PDF
    Objectives: The KNee OsteoArthritis Prediction (KNOAP2020) challenge was organized to objectively compare methods for the prediction of incident symptomatic radiographic knee osteoarthritis within 78 months on a test set with blinded ground truth. Design: The challenge participants were free to use any available data sources to train their models. A test set of 423 knees from the Prevention of Knee Osteoarthritis in Overweight Females (PROOF) study consisting of magnetic resonance imaging (MRI) and X-ray image data along with clinical risk factors at baseline was made available to all challenge participants. The ground truth outcomes, i.e., which knees developed incident symptomatic radiographic knee osteoarthritis (according to the combined ACR criteria) within 78 months, were not provided to the participants. To assess the performance of the submitted models, we used the area under the receiver operating characteristic curve (ROCAUC) and balanced accuracy (BACC). Results: Seven teams submitted 23 entries in total. A majority of the algorithms were trained on data from the Osteoarthritis Initiative. The model with the highest ROCAUC (0.64 (95% confidence interval (CI): 0.57–0.70)) used deep learning to extract information from X-ray images combined with clinical variables. The model with the highest BACC (0.59 (95% CI: 0.52–0.65)) ensembled three different models that used automatically extracted X-ray and MRI features along with clinical variables. Conclusion: The KNOAP2020 challenge established a benchmark for predicting incident symptomatic radiographic knee osteoarthritis. Accurate prediction of incident symptomatic radiographic knee osteoarthritis is a complex and still unsolved problem requiring additional investigation.</p

    Математична модель поверхні тіла у неявній формі на основі інтерфлетації функцій

    Get PDF
    В роботi запропоновано, з використанням iнтерфлетацiї функцiй, новий, загальний метод побудови рiвнянь поверхонь тiл складної форми в наявнiй формi ∂G : OG(x, y, z) = 0, де ∂G — поверхня 3D-тiла G. Функцiя OG(x, y, z) що належить C^r(R^3), r ≥ 1, є найкращим середньоквадратичним наближенням до функцiї f(x, y, z) що належить C(R^3), побудованої за допомогою R-функцiй, яка входить в рiвняння f(x, y, z) = 0, (x, y, z) що належить ∂G.A new general method, which uses the interflatation of functions, of construction of the equations of surfaces of bodies with complex shape in the implicit form OG(x, y, z) = 0, (x, y, z) belongs ∂G, where ∂G is the surface of the 3D body G, is offered. The function OG(x, y, z) belongs C^r(R^3), r ≥ 1 is the best mean-square approximation of the function f(x, y, z) belongs C(R^3) which is built with the use of R-functions and satisfies the equation f(x, y, z) = 0, (x, y, z) belongs ∂G

    Особливості співробітництва України з Міжнародним валютним фондом

    Get PDF
    Ціль статті - розкрити особливості співпраці України з МВФ, спрямованої на досягнення макроекономічної стабілізації в умовах світової фінансової кризи. Для досягнення мети було поставлено і вирішено коло завдань, у тому числі: дослідити основні проблеми та перспективи співробітництва України з МВФ та розкрити сутність стабілізаційних програм і визначити в них роль МВФ
    corecore