53 research outputs found
Ab Initio Calculations of Even Oxygen Isotopes with Chiral Two- Plus Three-Nucleon Interactions
We formulate the In-Medium Similarity Renormalization Group (IM-SRG) for
open-shell nuclei using a multi-reference formalism based on a generalized Wick
theorem introduced in quantum chemistry. The resulting multi-reference IM-SRG
(MR-IM-SRG) is used to perform the first ab initio study of even oxygen
isotopes with chiral NN and 3N Hamiltonians, from the proton to the neutron
drip lines. We obtain an excellent reproduction of experimental ground-state
energies with quantified uncertainties, which is validated by results from the
Importance-Truncated No-Core Shell Model and the Coupled Cluster method. The
agreement between conceptually different many-body approaches and experiment
highlights the predictive power of current chiral two- and three-nucleon
interactions, and establishes the MR-IM-SRG as a promising new tool for ab
initio calculations of medium-mass nuclei far from shell closures.Comment: 5 pages, 4 figures, v2 corresponding to published versio
Ab initio calculations of reactions with light nuclei
An {\em ab initio} (i.e., from first principles) theoretical framework
capable of providing a unified description of the structure and low-energy
reaction properties of light nuclei is desirable to further our understanding
of the fundamental interactions among nucleons, and provide accurate
predictions of crucial reaction rates for nuclear astrophysics, fusion-energy
research, and other applications. In this contribution we review {\em ab
initio} calculations for nucleon and deuterium scattering on light nuclei
starting from chiral two- and three-body Hamiltonians, obtained within the
framework of the {\em ab initio} no-core shell model with continuum. This is a
unified approach to nuclear bound and scattering states, in which
square-integrable energy eigenstates of the -nucleon system are coupled to
target-plus-projectile wave functions in the spirit of the resonating
group method to obtain an efficient description of the many-body nuclear
dynamics both at short and medium distances and at long ranges.Comment: 9 pages, 5 figures, proceedings of the 21st International Conference
on Few-Body Problems in Physic
Ab Initio study of neutron drops with chiral Hamiltonians
We report ab initio calculations for neutron drops in a 10 MeV external
harmonic-oscillator trap using chiral nucleon-nucleon plus three-nucleon
interactions. We present total binding energies, internal energies, radii and
odd-even energy differences for neutron numbers N = 2 - 18 using the no-core
shell model with and without importance truncation. Furthermore, we present
total binding energies for N = 8, 16, 20, 28, 40, 50 obtained in a
coupled-cluster approach. Comparisons with Green's Function Monte Carlo
results, where available, using Argonne v8' with three-nucleon interactions
reveal important dependences on the chosen Hamiltonian.Comment: 7 pages, 5 figure
In-Medium Similarity Renormalization Group with Chiral Two- Plus Three-Nucleon Interactions
We use the recently proposed In-Medium Similarity Renormalization Group
(IM-SRG) to carry out a systematic study of closed-shell nuclei up to
\nuc{Ni}{56}, based on chiral two- plus three-nucleon interactions. We
analyze the capabilities of the IM-SRG by comparing our results for the
ground-state energy to Coupled Cluster calculations, as well as to quasi-exact
results from the Importance-Truncated No-Core Shell Model. Using chiral two-
plus three-nucleon Hamiltonians whose resolution scales are lowered by
free-space SRG evolution, we obtain good agreement with experimental binding
energies in \nuc{He}{4} and the closed-shell oxygen isotopes, while the
calcium and nickel isotopes are somewhat overbound.Comment: 11 pages, 7 figures, submitted to Phys. Rev.
Nonperturbative shell-model interactions from the in-medium similarity renormalization group
We present the first ab initio construction of valence-space Hamiltonians for
medium-mass nuclei based on chiral two- and three-nucleon interactions using
the in-medium similarity renormalization group. When applied to the oxygen
isotopes, we find experimental ground-state energies are well reproduced,
including the flat trend beyond the drip line at 24O. Similarly, natural-parity
spectra in 21,22,23,24O are in agreement with experiment, and we present
predictions for excited states in 25,26O. The results exhibit a weak dependence
on the harmonic-oscillator basis parameter and reproduce spectroscopy within
the standard sd valence space.Comment: 6 pages, 5 figures, published versio
Low-energy neutron-deuteron reactions with N3LO chiral forces
We solve three-nucleon Faddeev equations with nucleon-nucleon and
three-nucleon forces derived consistently in the framework of chiral
perturbation theory at next-to-next-to-next-to-leading order in the chiral
expansion. In this first investigation we include only matrix elements of the
three-nucleon force for partial waves with the total two-nucleon
(three-nucleon) angular momenta up to 3 (5/2). Low-energy neutron-deuteron
elastic scattering and deuteron breakup reaction are studied. Emphasis is put
on Ay puzzle in elastic scattering and cross sections in symmetric-space-star
and neutron-neutron quasi-free-scattering breakup configurations, for which
large discrepancies between data and theory have been reported.Comment: 22 pages, 7 figure
Living on the edge of stability, the limits of the nuclear landscape
A first-principles description of nuclear systems along the drip lines
presents a substantial theoretical and computational challenge. In this paper,
we discuss the nuclear theory roadmap, some of the key theoretical approaches,
and present selected results with a focus on long isotopic chains. An important
conclusion, which consistently emerges from these theoretical analyses, is that
three-nucleon forces are crucial for both global nuclear properties and
detailed nuclear structure, and that many-body correlations due to the coupling
to the particle continuum are essential as one approaches particle drip lines.
In the quest for a comprehensive nuclear theory, high performance computing
plays a key role.Comment: Contribution to proceedings of Nobel Symposium 152: Physics with
radioactive beams, June 2012, Gothenburg, Swede
- …