5,756 research outputs found

    Mixing and merging for spoken document retrieval

    Get PDF
    This paper describes a number of experiments that explo- red the issues surrounding the retrieval of spoken documents. Two such issues were examined. First, attempting to find the best use of speech recogniser output to produce the highest retrieval effectiveness. Second, investigating the potential problems of retrieving from a so-called "mi- xed collection", i.e. one that contains documents from both a speech recognition system (producing many errors) and from hand transcription (producing presumably near perfect documents). The result of the first part of the work found that merging the transcripts of multiple recognisers showed most promise. The investigation in the second part showed how the term weighting scheme used in a retrieval system was important in determining whether the system was affected detrimentally when retrieving from a mixed collection

    Discrete element weld model, phase 2

    Get PDF
    A numerical method was developed for analyzing the tungsten inert gas (TIG) welding process. The phenomena being modeled include melting under the arc and the flow in the melt under the action of buoyancy, surface tension, and electromagnetic forces. The latter entails the calculation of the electric potential and the computation of electric current and magnetic field therefrom. Melting may occur at a single temperature or over a temperature range, and the electrical and thermal conductivities can be a function of temperature. Results of sample calculations are presented and discussed at length. A major research contribution has been the development of numerical methodology for the calculation of phase change problems in a fixed grid framework. The model has been implemented on CHAM's general purpose computer code PHOENICS. The inputs to the computer model include: geometric parameters, material properties, and weld process parameters

    Analysis of physical-chemical processes governing SSME internal fluid flows

    Get PDF
    The efforts to adapt CHAM's computational fluid dynamics code, PHOENICS, to the analysis of flow within the high pressure fuel turbopump (HPFTP) aft-platform seal cavity of the SSME are summarized. In particular, the special purpose PHOENICS satellite and ground station specifically formulated for this application are listed and described, and the preliminary results of the first part two-dimensional analyses are presented and discussed. Planned three-dimensional analyses are also briefly outlined. To further understand the mixing and combustion processes in the SSME fuelside preburners, a single oxygen-hydrogen jet element was investigated

    A new data analysis framework for the search of continuous gravitational wave signals

    Full text link
    Continuous gravitational wave signals, like those expected by asymmetric spinning neutron stars, are among the most promising targets for LIGO and Virgo detectors. The development of fast and robust data analysis methods is crucial to increase the chances of a detection. We have developed a new and flexible general data analysis framework for the search of this kind of signals, which allows to reduce the computational cost of the analysis by about two orders of magnitude with respect to current procedures. This can correspond, at fixed computing cost, to a sensitivity gain of up to 10%-20%, depending on the search parameter space. Some possible applications are discussed, with a particular focus on a directed search for sources in the Galactic center. Validation through the injection of artificial signals in the data of Advanced LIGO first observational science run is also shown.Comment: 21 pages, 8 figure

    An improved algorithm for narrow-band searches of continuous gravitational waves

    Full text link
    Continuous gravitational waves signals, emitted by asymmetric spinning neutron stars, are among the main targets of current detectors like Advanced LIGO and Virgo. In the case of sources, like pulsars, which rotational parameters are measured through electromagnetic observations, typical searches assume that the gravitational wave frequency is at a given known fixed ratio with respect to the star rotational frequency. For instance, for a neutron star rotating around one of its principal axis of inertia the gravitational signal frequency would be exactly two times the rotational frequency of the star. It is possible, however, that this assumption is wrong. This is why search algorithms able to take into account a possible small mismatch between the gravitational waves frequency and the frequency inferred from electromagnetic observations have been developed. In this paper we present an improved pipeline to perform such narrow-band searches for continuous gravitational waves from neutron stars, about three orders of magnitude faster than previous implementations. The algorithm that we have developed is based on the {\it 5-vectors} framework and is able to perform a fully coherent search over a frequency band of width O\mathcal{O}(Hertz) and for hundreds of spin-down values running a few hours on a standard workstation. This new algorithm opens the possibility of long coherence time searches for objects which rotational parameters are highly uncertain.Comment: 19 pages, 8 figures, 6 tables, submitted to CQ

    A semi-coherent analysis method to search for continuous gravitational waves emitted by ultra-light boson clouds around spinning black holes

    Full text link
    As a consequence of superradiant instability induced in Kerr black holes, ultra-light boson clouds can be a source of persistent gravitational waves, potentially detectable by current and future gravitational-wave detectors. These signals have been predicted to be nearly monochromatic, with a small steady frequency increase (spin-up), but given the several assumptions and simplifications done at theoretical level, it is wise to consider, from the data analysis point of view, a broader class of gravitational signals in which the phase (or the frequency) slightly wander in time. Also other types of sources, e.g. neutron stars in which a torque balance equilibrium exists between matter accretion and emission of persistent gravitational waves, would fit in this category. In this paper we present a robust and computationally cheap analysis pipeline devoted to the search of such kind of signals. We provide a full characterization of the method, through both a theoretical sensitivity estimation and through the analysis of syntethic data in which simulated signals have been injected. The search setup for both all-sky searches and higher sensitivity directed searches is discussed.Comment: 13 pages, 13 figure

    Docosahexaenoic Acid supplementation, vascular function and risk factors for cardiovascular disease: a randomized controlled trial in young adults

    Get PDF
    A high consumption of omega-3 long-chain polyunsaturated fatty acids, and particularly docosahexaenoic acid (DHA), has been suggested to reduce the risk of cardiovascular disease (CVD). However, while DHA supplementation may have benefits for secondary prevention, few studies have investigated the role of DHA in the primary prevention of CVD. Here, we tested the hypothesis that DHA supplementation improves endothelial function and risk factors for CVD

    Probabilistic simulation of long term behavior in polymer matrix composites

    Get PDF
    A methodology to compute cumulative probability distribution functions (CDF) of fatigue life for different ratios, r of applied stress to the laminate strength based on first ply failure criteria has been developed and demonstrated. Degradation effects due to long term environmental exposure and mechanical cyclic loads are considered in the simulation process. A unified time-stress dependent multi-factor interaction equation model developed at NASA Lewis Research Center has been used to account for the degradation/aging of material properties due to cyclic loads. Fast probability integration method is used to perform probabilistic simulation of uncertainties. Sensitivity of fatigue life reliability to uncertainties in the primitive random variables are computed and their significance in the reliability based design for maximum life is discussed. The results show that the graphite/epoxy (0/+45/90) deg laminate with ply thickness 0.125 in. has 500,000 cycles life for applied stress to laminate strength ratio of 0.6 and a reliability of 0.999. Also, the fatigue life reliability has been found to be most sensitive to the ply thickness and matrix tensile strength. Tighter quality controls must therefore be enforced on ply thickness and matrix strength in order to achieve high reliability of the structure

    MiR193a Modulation and Podocyte Phenotype

    Get PDF
    Apolipoprotein L1 (APOL1)-miR193a axis has been reported to play a role in the maintenance of podocyte homeostasis. In the present study, we analyzed transcription factors relevant to miR193a in human podocytes and their effects on podocytes\u27 molecular phenotype. The motif scan of the miR193a gene provided information about transcription factors, including YY1, WT1, Sox2, and VDR-RXR heterodimer, which could potentially bind to the miR193a promoter region to regulate miR193a expression. All structure models of these transcription factors and the tertiary structures of the miR193a promoter region were generated and refined using computational tools. The DNA-protein complexes of the miR193a promoter region and transcription factors were created using a docking approach. To determine the modulatory role of miR193a on APOL1 mRNA, the structural components of APOL1 3\u27 UTR and miR193a-5p were studied. Molecular Dynamic (MD) simulations validated interactions between miR193a and YY1/WT1/Sox2/VDR/APOL1 3\u27 UTR region. Undifferentiated podocytes (UPDs) displayed enhanced miR193a, YY1, and Sox2 but attenuated WT1, VDR, and APOL1 expressions, whereas differentiated podocytes (DPDs) exhibited attenuated miR193a, YY1, and Sox2 but increased WT1, VDR, APOL1 expressions. Inhibition of miR193a in UPDs enhanced the expression of APOL1 as well as of podocyte molecular markers; on the other hand, DPD-transfected with miR193a plasmid showed downing of APOL1 as well as podocyte molecular markers suggesting a causal relationship between miR193a and podocyte molecular markers. Silencing of YY1 and Sox2 in UPDs decreased the expression of miR193a but increased the expression of VDR, and CD2AP (a marker of DPDs); in contrast, silencing of WT1 and VDR in DPDs enhanced the expression of miR193a, YY1, and Sox2. Since miR193a-downing by Vitamin D receptor (VDR) agonist not only enhanced the mRNA expression of APOL1 but also of podocyte differentiating markers, suggest that down-regulation of miR193a could be used to enhance the expression of podocyte differentiating markers as a therapeutic strategy

    Tubular cell phenotype in HIV-associated nephropathy: Role of phospholipid lysophosphatidic acid

    Get PDF
    Collapsing glomerulopathy and microcysts are characteristic histological features of HIV-associated nephropathy (HIVAN). We have previously reported the role of epithelial mesenchymal transition (EMT) in the development of glomerular and tubular cell phenotypes in HIVAN. Since persistent tubular cell activation of NF kappa B has been reported in HIVAN, we now hypothesize that HIV may be contributing to tubular cell phenotype via lysophosphatidic acid (LPA) mediated downstream signaling. Interestingly, LPA and its receptors have also been implicated in the tubular interstitial cell fibrosis (TIF) and cyst formation in autosomal dominant polycystic kidney disease (PKD). Primary human proximal tubular cells (HRPTCs) were transduced with either empty vector (EV/HRPTCs), HIV (HIV/HRPTCs) or treated with LPA (LPA/HRPTC). Immunoelectrophoresis of HIV/HRPTCs and LPA/HRPTCs displayed enhanced expression of pro-fibrotic markers: a) fibronectin (2.25 fold), b) connective tissue growth factor (CTGF; 4.8 fold), c) alpha-smooth muscle actin (alpha-SMA; 12 fold), and d) collagen 1(5.7 fold). HIV enhanced tubular cell phosphorylation of ILK-1, FAK, PI3K, Akt, ERKs and P38 MAPK HIV increased tubular cell transcriptional binding activity of NF-kappa B; whereas, a LPA biosynthesis inhibitor (AACOCF3), a DAG kinase inhibitor, a LPA receptor blocker (Ki16425), a NF-kappa B inhibitor (PDTC) and NF kappa B-siRNA not only displayed downregulation of a NF kappa B activity but also showed attenuated expression of profibrotic/EMT genes in HIV milieu. These findings suggest that LPA could be contributing to HIV-induced tubular cell phenotype via NF kappa B activation in HIVAN. (C) 2015 Elsevier Inc. All rights reserved
    • …
    corecore