1,996 research outputs found

    Linearly independent pure-state decomposition and quantum state discrimination

    Full text link
    We put the pure-state decomposition mathematical property of a mixed state to a physical test. We begin by characterizing all the possible decompositions of a rank-two mixed state by means of the complex overlap between two involved states. The physical test proposes a scheme of quantum state recognition of one of the two linearly independent states which arise from the decomposition. We find that the two states associated with the balanced pure-state decomposition have the smaller overlap modulus and therefore the smallest probability of being discriminated conclusively, while in the nonconclusive scheme they have the highest probability of having an error. In addition, we design an experimental scheme which allows to discriminate conclusively and optimally two nonorthogonal states prepared with different a priori probabilities. Thus, we propose a physical implementation for this linearly independent pure-state decomposition and state discrimination test by using twin photons generated in the process of spontaneous parametric down conversion. The information-state is encoded in one photon polarization state whereas the second single-photon is used for heralded detection.Comment: 6 pages, 5 figures, Submitted to Phys. Rev.

    Investigation of acceptor levels and hole scattering mechanisms in p-gallium selenide by means of transport measurements under pressure

    Full text link
    The effect of pressure on acceptor levels and hole scattering mechanisms in p-GaSe is investigated through Hall effect and resistivity measurements under quasi-hydrostatic conditions up to 4 GPa. The pressure dependence of the hole concentration is interpreted through a carrier statistics equation with a single (nitrogen) or double (tin) acceptor whose ionization energies decrease under pressure due to the dielectric constant increase. The pressure effect on the hole mobility is also accounted for by considering the pressure dependencies of both the phonon frequencies and the hole-phonon coupling constants involved in the scattering rates.Comment: 13 pages, Latex, 4 ps figures. to appear in High Pressure Research 69 (1997

    Antifungal Activity of Amphiphilic Perylene Bisimides

    Full text link
    [EN] Perylene-based compounds, either naturally occurring or synthetic, have shown interesting biological activities. In this study, we report on the broad-spectrum antifungal properties of two lead amphiphilic perylene bisimides, compounds 4 and 5, which were synthesized from perylene-3,4,9,10-tetracarboxylic dianhydride by condensation with spermine and an ammonium salt formation. The antifungal activity was evaluated using a collection of fungal strains and clinical isolates from patients with onychomycosis or sporotrichosis. Both molecules displayed an interesting antifungal profile with MIC values in the range of 2-25 mu M, being as active as several reference drugs, even more potent in some particular strains. The ammonium trifluoroacetate salt 5 showed the highest activity with a MIC value of 2.1 mu M for all tested Candida spp., two Cryptococcus spp., two Fusarium spp., and one Neoscytalidium spp. strain. Therefore, these amphiphilic molecules with the perylene moiety and cationic ammonium side chains represent important structural features for the development of novel antifungals.This study was supported by grant 201680I008 (awarded to M.A.G.-C.) from the Spanish Government (Consejo Superior de Investigaciones Cientificas) and grant 3756 of the University of Antioquia.Roa-Linares, VC.; Mesa-Arango, AC.; Zaragoza, RJ.; González-Cardenete, MA. (2022). Antifungal Activity of Amphiphilic Perylene Bisimides. Molecules. 27(20):1-12. https://doi.org/10.3390/molecules27206890112272

    Unbroken supersymmetry in the Aharonov-Casher effect

    Full text link
    We consider the problem of the bound states of a spin 1/2 chargless particle in a given Aharonov-Casher configuration. To this end we recast the description of the system in a supersymmetric form. Then the basic physical requirements for unbroken supersymmetry are established. We comment on the possibility of neutron confinement in this system

    The primary genepool of cassava (Manihot esculenta Crantz).

    Get PDF
    The cultivated genepool comprises all comercial stocks of the crop besides all ingenous landraces and folk varieties of the domesticate.Suplemento. Edição dos Resumos do IV International Scientific Meeting of the Cassava Biotechnology Network, Salvador,1998

    The primary gene pool of cassava (Manihot esculenta Crantz).

    Get PDF
    A crop gene pool comprises three distinct categories of gene suppliers, primary, secondary, and tertiary gene pools. The primary gene pool (GP-1) is composed of gene reservoirs that cross easily with the domesticate and the crosses produce fertile offspring regularly. The secondary (GP-2) and tertiary (GP-3) gene pools comprise gene sources that cross with variable degrees of diffilculty with the crop species, this implies less close genetic distances. The GP-1 is further subdivided in cultivated and wild gene pools. The cultivated gene pool englobes commercial stocks of the crop besides indigenous landraces and folk varieties of the domesticate. The wild GP-1 of a crop comprises putative ancestors and closely related species that show a fair degree of fertile relationships with the domesticate. Two Douth American wild subspecies of cassava (M. flabellifolia and M. peruviana) are natural members of the wild GP-1 of the species. Another Brazilian species (M. pruinosa) is so close morphologically to the two wild subspecies of cassava that it may turn out another member of the wild GP-1 of the indigen. The GP-2 of cassava is more difficult to delimit as few species have been tested for genetic compatibility. Biosystematic crosses carried out between the crop and a number of wild species suggest a dozen of them as components of the GP-2, the majority are Brazilian species

    A collective effort to identify and quantify geo-energy risks

    Get PDF
    The increasing global demand for energy and the imminent need to reduce carbon emissions in our planet has led mankind to find new solutions. Some in the energy industry have taken special interest in geothermal reservoirs, a resource with the potential to provide large amounts of renewable energy. Meanwhile, the storage of carbon dioxide in underground geological formations presents a fantastic opportunity to discard CO2 and mitigate global warming. This study links efforts from academic institutions, industry energy operators, industrial partners and research institutes to answer fundamental scientific questions that can help us understand the subsurface and generate better exploitation practices. We examine the geology of reservoirs used for geothermal energy extraction and carbon dioxide capture. We use a combination of field geology, photogrammetry, mineral analysis and experimental rock mechanics to understand fracture networks and fluid flow paths of two geologically diverse reservoirs in Europe: 1) the Hengill geothermal system in south-west Iceland, and 2) the Carnmenellis granite geothermal system in Cornwall (UK). These results aim to provide experimental data to refine numerical models predicting fluid flow and contribute to the quantification of the associated risks of exploiting the subsurface

    Calculation of quantum discord for qubit-qudit or N qubits

    Get PDF
    Quantum discord, a kind of quantum correlation, is defined as the difference between quantum mutual information and classical correlation in a bipartite system. It has been discussed so far for small systems with only a few independent parameters. We extend here to a much broader class of states when the second party is of arbitrary dimension d, so long as the first, measured, party is a qubit. We present two formulae to calculate quantum discord, the first relating to the original entropic definition and the second to a recently proposed geometric distance measure which leads to an analytical formulation. The tracing over the qubit in the entropic calculation is reduced to a very simple prescription. And, when the d-dimensional system is a so-called X state, the density matrix having non-zero elements only along the diagonal and anti-diagonal so as to appear visually like the letter X, the entropic calculation can be carried out analytically. Such states of the full bipartite qubit-qudit system may be named "extended X states", whose density matrix is built of four block matrices, each visually appearing as an X. The optimization involved in the entropic calculation is generally over two parameters, reducing to one for many cases, and avoided altogether for an overwhelmingly large set of density matrices as our numerical investigations demonstrate. Our results also apply to states of a N-qubit system, where "extended X states" consist of (2^(N+2) - 1) states, larger in number than the (2^(N+1) - 1) of X states of N qubits. While these are still smaller than the total number (2^(2N) - 1) of states of N qubits, the number of parameters involved is nevertheless large. In the case of N = 2, they encompass the entire 15-dimensional parameter space, that is, the extended X states for N = 2 represent the full qubit-qubit system.Comment: 6 pages, 1 figur
    corecore