15,670 research outputs found

    The Quest for an Intermediate-Scale Accidental Axion and Further ALPs

    Get PDF
    The recent detection of the cosmic microwave background polarimeter experiment BICEP2 of tensor fluctuations in the B-mode power spectrum basically excludes all plausible axion models where its decay constant is above 101310^{13} GeV. Moreover, there are strong theoretical, astrophysical, and cosmological motivations for models involving, in addition to the axion, also axion-like particles (ALPs), with decay constants in the intermediate scale range, between 10910^9 GeV and 101310^{13} GeV. Here, we present a general analysis of models with an axion and further ALPs and derive bounds on the relative size of the axion and ALP photon (and electron) coupling. We discuss what we can learn from measurements of the axion and ALP photon couplings about the fundamental parameters of the underlying ultraviolet completion of the theory. For the latter we consider extensions of the Standard Model in which the axion and the ALP(s) appear as pseudo Nambu-Goldstone bosons from the breaking of global chiral U(1)U(1) (Peccei-Quinn (PQ)) symmetries, occuring accidentally as low energy remnants from exact discrete symmetries. In such models, the axion and the further ALP are protected from disastrous explicit symmetry breaking effects due to Planck-scale suppressed operators. The scenarios considered exploit heavy right handed neutrinos getting their mass via PQ symmetry breaking and thus explain the small mass of the active neutrinos via a seesaw relation between the electroweak and an intermediate PQ symmetry breaking scale. We show some models that can accommodate simultaneously an axion dark matter candidate, an ALP explaining the anomalous transparency of the universe for γ\gamma-rays, and an ALP explaining the recently reported 3.55 keV gamma line from galaxies and clusters of galaxies, if the respective decay constants are of intermediate scale.Comment: 43pp, 4 figures. v2: version accepted for publication in JHE

    Time dependent transformations in deformation quantization

    Full text link
    We study the action of time dependent canonical and coordinate transformations in phase space quantum mechanics. We extend the covariant formulation of the theory by providing a formalism that is fully invariant under both standard and time dependent coordinate transformations. This result considerably enlarges the set of possible phase space representations of quantum mechanics and makes it possible to construct a causal representation for the distributional sector of Wigner quantum mechanics.Comment: 16 pages, to appear in the J. Math. Phy

    Charged shells in Lovelock gravity: Hamiltonian treatment and physical implications

    Full text link
    Using a Hamiltonian treatment, charged thin shells in spherically symmetric spacetimes in d dimensional Lovelock-Maxwell theory are studied. The coefficients of the theory are chosen to obtain a sensible theory, with a negative cosmological constant appearing naturally. After writing the action and the Lagrangian for a spacetime comprised of an interior and an exterior regions, with a thin shell as a boundary in between, one finds the Hamiltonian using an ADM description. For spherically symmetric spacetimes, one reduces the relevant constraints. The dynamic and constraint equations are obtained. The vacuum solutions yield a division of the theory into two branches, d-2k-1>0 (which includes general relativity, Born-Infeld type theories) and d-2k-1=0 (which includes Chern-Simons type theories), where k gives the highest power of the curvature in the Lagrangian. An additional parameter, chi, gives the character of the vacuum solutions. For chi=1 the solutions have a black hole character. For chi=-1 the solutions have a totally naked singularity character. The integration through the thin shell takes care of the smooth junction. The subsequent analysis is divided into two cases: static charged thin shell configurations, and gravitationally collapsing charged dust shells. Physical implications are drawn: if such a large extra dimension scenario is correct, one can extract enough information from the outcome of those collapses as to know, not only the actual dimension of spacetime, but also which particular Lovelock gravity, is the correct one.Comment: 25 pages, 9 figure

    Limiting fragmentation in heavy-ion collisions and percolation of strings

    Get PDF
    The observed limiting fragmentation of charged particle distributions in heavy ion collisions is difficult to explain as it does not apply to the proton spectrum itself. On the other hand, string percolation provides a mechanism to regenerate fast particles, eventually compensating the rapidity shift (energy loss) of the nucleons. However a delicate energy-momentum compensation is required, and in our framework we see no reason for limiting fragmentation to be exact. A prediction, based on percolation arguments, is given for the charged particle density in the full rapidity interval at LHC energy (s=5500GeV)(\sqrt s =5500 GeV).Comment: 9 pages, 2 figures (2 eps files), late

    A QCD sum rule calculation of the X±(5568)→Bs0π±X^\pm(5568) \to B_{s}^0\pi^\pm decay width

    Get PDF
    To understand the nature of the X(5568)X(5568), recently observed in the mass spectrum of the Bs0π±B_{s}^0\pi^\pm system by the D0 Collaboration, we have investigated, in a previous work, a scalar tetraquark (diquak-antidiquark) structure for it, within the two-point QCD sum rules method. The result found for its mass agrees well with the experimental value. Encouraged by this finding we now extend our calculations to obtain the decay width of X(5568)X(5568) to Bs0π±B_{s}^0\pi^\pm using the three-point QCD sum rule. We obtain a value of (20.4\pm8.7)\MeV, which, on comparing with the experimental value of 21.9\pm6.4 (\mbox{sta})^{+5.0}_{-2.5}(\mbox{syst}) \MeV/c^2, reinforces the scalar four quark nature of X(5568)X(5568).Comment: Minor modifications made. Some new discussions and references adde

    Bounds on the Simplest Little Higgs Model Mass Spectrum Through Z Leptonic Decay

    Full text link
    We derive the leptonic neutral current in the simplest little Higgs model and compute the contribution of the model to the decay width Z→e+e−Z \to e^+e^-. Using the precision electroweak data we obtain a strong lower bound f≥5.6f\geq 5.6 TeV at 95% C.L. on the characteristic energy scale of the model. It results in a lower bound for the new gauge bosons W′±W^{\prime\pm} and Z′Z^{\prime} as being MW′±≥2.6M_{W^{\prime\pm}}\geq 2.6 TeV and MZ′≥3.1M_{Z^{\prime}}\geq 3.1 TeV, respectively. We also present the allowed values of the k=f1/f2k=f_1/f_2 which is the parameter relating the two vacuum expectation values of the scalar triplets in the model, and the μ\mu parameter of a quadratic term, involving the triplets, necessary to provide an acceptable mass range for the standard Higgs boson.Comment: New references added, 13 pages. Version to be publishe

    A systematic review of life cycle sustainability assessment: current state, methodological challenges, and implementation issues

    Get PDF
    The life cycle sustainability assessment (LCSA) is a tool to assess sustainability from a life cycle perspective, which has been receiving increased attention over the years. This work presents a systematic review of the current application of LCSA, presenting the foundations, main methods, current operationalization state, and major challenges to its broad implementation. The review protocol considered the search of keywords in Scopus and Web of Science databases. The search has considered the literature published or in the press until December 2018, resulting in the selection of 144 articles written in English. Of those, 71 articles operationalize LCSA in real case studies, while the remaining consist of review, viewpoint, and methodological development articles. This review demonstrates that the use of LCSA has been increasing in recent years. Today, the most applied approach is to consider LCSA as the sum of life cycle assessment, life cycle costing, and social life cycle assessment because it is built on the methodologies that already exist and are under continuous development. However, the lack of harmonization of the methodology is a central challenge to its operationalization. Therefore, LCSA still requires further improvement in, among others, definition of coherent system boundaries, the development of robust databases to allow the assessment of economic and social perspectives, definition of impact categories that allow comparability between studies, development of impact assessment methods, development of methods to carry out uncertainty analysis, and communication strategies. Besides, further case studies should be developed to support the improvement of the methodology and a better understanding of the interaction of the environmental, economic, and social aspects.publishe
    • …
    corecore