19,389 research outputs found
Modelling the exposure to Cronobacter sakazakii by consumption of a cocoa-milk-based beverage processed by pulsed electric fields
peer-reviewedM.C. Pina-Pérez is grateful to CSIC for providing a DOCTOR contract linked to the INNPACTO project IPT-2011-1724-060000. This study was carried out with funds from BISOSTAD project PSE-060000-2009-003, Generalitat Valenciana I+D+I emergent research groups GV/2010/064 and CYCIT project AGL2010-22206-C02-01.Infants’ exposure (Nf ) to Cronobacter sakazakii via the consumption of infant-rich-inpolyphenols
cocoa-milk-based beverages (CCX-M) treated with high-intensity pulsed
electric fields (PEF) was evaluated. Monte Carlo simulation enabled the prediction
of the variability in C. sakazakii load in beverages at the time of consumption to be
estimated. Different scenarios (initial contamination levels; PEF treatment conditions;
and time-temperature combinations of CCX-M beverages storage after treatment) were
simulated. Cocoa addition and PEF treatment resulted in the most influential input
factors to control bacterial final load. Cronobacter spp. exposure risk was reduced by
a maximum of 100 times at 95% of iterations due to addition of cocoa at 5 g/100 mL,
corresponding to scenario 3 (PEF: 15 kV/cm–3,000 μs; storage 120 h at 8 °C). Moreover,
the probability of illness for a healthy population was reduced from 2.15 × 10-8,
in the baseline scenario, to 4.78 × 10-10 due to cocoa addition and application of
15 kV/cm–3,000 μs PEF treatment.BISOSTAD projec
Recommended from our members
The relationship between charge distribution, charge packet formation and electroluminescence in XLPE under DC
Different reports describing the internal distribution of space charge in cross-linked polyethylene (XLPE) under DC field have been published recently. The most striking fact observed is the organization of the space charge into charge packets that cross the insulation. All models for charge packet formation imply that carrier recombination will occur. As the recombination region is potentially a luminescence one it is of interest to record the electroluminescence in this regime. This topic is addressed in this paper
Recommended from our members
Space charge induced luminescence in epoxy resin
Dielectric breakdown of epoxies is preceded by a light emission from the solid state material, so-called electroluminescence. Very little is known however on the luminescence properties of epoxy. The aim of this paper is to derive information that can be used as a basis to understand the nature of the excited states and their involvement in electrical degradation processes
Recommended from our members
Electroluminescence excitation mechanisms in an epoxy resin under divergent and uniform field
Electroluminescence excitation mechanisms have been investigated in epoxy resin under divergent and uniform field situations. Metallic wires embedded in the resin were used to produce field divergence whereas film samples were metallised to obtain a uniform field. Electroluminescence under divergent field was stimulated by an impulse voltage. Light was emitted on the positive and negative fronts of the square pulses when the field exceeded 20 kV/mm at the wire surface, with equal intensity and without polarity dependence. There was evidence of space charge accumulation around the wires in multiple-pulse experiments. Charge injection and extraction occurring at both fronts of the pulse provide the condition for EL excitation. Further excitation of the EL during the plateau of the voltage pulse is prevented by the opposite field of the trapped charge. Field computation with and without space charge supports the proposed interpretation. A DC voltage was used for the uniform field experiments. A continuous level of electroluminescence is found at 175 kV/mm. Charging/discharging current measurements and space charge profile analyses using the pulsed electro-acoustic (PEA) technique were performed at different fields up to the EL level. Dipolar orientation generates a long lasting transient current that prevents the conduction level being reached within the experimental protocol (one hour poling time). The continuous EL emission is nevertheless associated with a regime where the conduction becomes dominant over the orientational polarization. Polarization and space charge contribute to the PEA charge profiles. Homo-charge injection at anode and cathode is seen at 20 kV/mm and a penetration of positive space charge in the bulk is detected above 100 kV/mm, suggesting an excitation of the continuous EL by bipolar charge recombination
Raman spectroscopy of iodine-doped double-walled carbon nanotubes
We present a Raman spectroscopy study of iodine-intercalated (p-type-doped)
double-walled carbon nanotubes. Double-walled carbon nanotubes (DWCNTs) are
synthesized by catalytic chemical vapor deposition and characterized by Raman
spectroscopy. The assignment of the radial breathing modes and the tangential
modes of pristine DWCNTs is done in the framework of the bond polarization
theory, using the spectral moment method. The changes in the Raman spectrum
upon iodine doping are analyzed. Poly-iodine anions are identi- fied, and the
Raman spectra reveal that the charge transfer between iodine and DWCNTs only
involves the outer tubes
Sensitivity Kernels for Flows in Time-Distance Helioseismology: Extension to Spherical Geometry
We extend an existing Born approximation method for calculating the linear
sensitivity of helioseismic travel times to flows from Cartesian to spherical
geometry. This development is necessary for using the Born approximation for
inferring large-scale flows in the deep solar interior. In a first sanity
check, we compare two mode kernels from our spherical method and from an
existing Cartesian method. The horizontal and total integrals agree to within
0.3 %. As a second consistency test, we consider a uniformly rotating Sun and a
travel distance of 42 degrees. The analytical travel-time difference agrees
with the forward-modelled travel-time difference to within 2 %. In addition, we
evaluate the impact of different choices of filter functions on the kernels for
a meridional travel distance of 42 degrees. For all filters, the sensitivity is
found to be distributed over a large fraction of the convection zone. We show
that the kernels depend on the filter function employed in the data analysis
process. If modes of higher harmonic degree () are
permitted, a noisy pattern of a spatial scale corresponding to
appears near the surface. When mainly low-degree modes are used
(), the sensitivity is concentrated in the deepest regions and it
visually resembles a ray-path-like structure. Among the different low-degree
filters used, we find the kernel for phase-speed filtered measurements to be
best localized in depth.Comment: 17 pages, 5 figures, 2 tables, accepted for publication in ApJ. v2:
typo in arXiv author list correcte
- …