23,304 research outputs found

    Thermal Diagnostics with the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory: A Validated Method for Differential Emission Measure Inversions

    Full text link
    We present a new method for performing differential emission measure (DEM) inversions on narrow-band EUV images from the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). The method yields positive definite DEM solutions by solving a linear program. This method has been validated against a diverse set of thermal models of varying complexity and realism. These include (1) idealized gaussian DEM distributions, (2) 3D models of NOAA Active Region 11158 comprising quasi-steady loop atmospheres in a non-linear force-free field, and (3) thermodynamic models from a fully-compressible, 3D MHD simulation of AR corona formation following magnetic flux emergence. We then present results from the application of the method to AIA observations of Active Region 11158, comparing the region's thermal structure on two successive solar rotations. Additionally, we show how the DEM inversion method can be adapted to simultaneously invert AIA and XRT data, and how supplementing AIA data with the latter improves the inversion result. The speed of the method allows for routine production of DEM maps, thus facilitating science studies that require tracking of the thermal structure of the solar corona in time and space.Comment: 21 pages, 18 figures, accepted for publication in Ap

    The 25 October 2010 Mentawai tsunami earthquake (M_w 7.8) and the tsunami hazard presented by shallow megathrust ruptures

    Get PDF
    The 25 October 2010 Mentawai, Indonesia earthquake (M_w 7.8) ruptured the shallow portion of the subduction zone seaward of the Mentawai islands, off-shore of Sumatra, generating 3 to 9 m tsunami run-up along southwestern coasts of the Pagai Islands that took at least 431 lives. Analyses of teleseismic P, SH and Rayleigh waves for finite-fault source rupture characteristics indicate ∌90 s rupture duration with a low rupture velocity of ∌1.5 km/s on the 10° dipping megathrust, with total slip of 2–4 m over an ∌100 km long source region. The seismic moment-scaled energy release is 1.4 × 10^(−6), lower than 2.4 × 10^(−6) found for the 17 July 2006 Java tsunami earthquake (M_w 7.8). The Mentawai event ruptured up-dip of the slip region of the 12 September 2007 Kepulauan earthquake (M_w 7.9), and together with the 4 January 1907 (M 7.6) tsunami earthquake located seaward of Simeulue Island to the northwest along the arc, demonstrates the significant tsunami generation potential for shallow megathrust ruptures in regions up-dip of great underthrusting events in Indonesia and elsewhere

    Nonperturbative Determination of Heavy Meson Bound States

    Get PDF
    In this paper we obtain a heavy meson bound state equation from the heavy quark equation of motion in heavy quark effective theory (HQET) and the heavy meson effective field theory we developed very recently. The bound state equation is a covariant extention of the light-front bound state equation for heavy mesons derived from light-front QCD and HQET. We determine the covariant heavy meson wave function variationally by minimizing the binding energy Λˉ\bar{\Lambda}. Subsequently the other basic HQET parameters λ1\lambda_1 and λ2\lambda_2, and the heavy quark masses mbm_b and mcm_c can also be consistently determined.Comment: 15 pages, 1 figur

    Controlled Quantum Secret Sharing

    Full text link
    We present a new protocol in which a secret multiqubit quantum state âˆŁÎšâŸ©\ket{\Psi} is shared by nn players and mm controllers, where âˆŁÎšâŸ©\ket{\Psi} is the encoding state of a quantum secret sharing scheme. The players may be considered as field agents responsible for carrying out a task, using the secret information encrypted in âˆŁÎšâŸ©\ket{\Psi}, while the controllers are superiors who decide if and when the task should be carried out and who to do it. Our protocol only requires ancillary Bell states and Bell-basis measurements.Comment: 6 pages, 0 figure, RevTeX4; published version with minor change

    Discovery of an unidentified Fermi object as a black widow-like millisecond pulsar

    Get PDF
    The Fermi Gamma-ray Space Telescope has revolutionized our knowledge of the gamma-ray pulsar population, leading to the discovery of almost 100 gamma-ray pulsars and dozens of gamma-ray millisecond pulsars (MSPs). Although the outer-gap model predicts different sites of emission for the radio and gamma-ray pulsars, until now all of the known gamma-ray MSPs have been visible in the radio. Here we report the discovery of a "radio-quiet" gamma-ray emitting MSP candidate by using Fermi, Chandra, Swift, and optical observations. The X-ray and gamma-ray properties of the source are consistent with known gamma-ray pulsars. We also found a 4.63-hr orbital period in optical and X-ray data. We suggest that the source is a black widow-like MSP with a ~0.1 solar-mass late-type companion star. Based on the profile of the optical and X-ray light-curves, the companion star is believed to be heated by the pulsar while the X-ray emissions originate from pulsar magnetosphere and/or from intra-binary shock. No radio detection of the source has been reported yet and although no gamma-ray/radio pulsation has been found, we estimated that the spin period of the MSP is ~3-5 ms based on the inferred gamma-ray luminosity.Comment: 6 pages, 2 figures; accepted for publication in ApJ

    Hadronic Production of S-wave and P-wave Charmed Beauty Mesons via Heavy Quark Fragmentation

    Get PDF
    At hadron colliders the dominant production mechanism of (bˉc)(\bar bc) mesons with large transverse momentum is due to parton fragmentation. We compute the rates and transverse momentum spectra for production of S-wave and P-wave (bˉc)(\bar b c) mesons at the Tevatron via the direct fragmentation of the bottom antiquark as well as the Altarelli-Parisi induced gluon fragmentation. Since all the radially and orbitally excited (bˉc)(\bar b c) mesons below the BDBD flavor threshold will cascade into the pseudoscalar ground state BcB_c through electromagnetic and/or hadronic transitions, they all contribute to the inclusive production of BcB_c. The contributions of the excited S-wave and P-wave states to the inclusive production of BcB_c are 58 and 23\%, respectively, and hence significant.Comment: Changes are made in the Discussio

    QCD Radiative Corrections to the Leptonic Decay Rate of the B_c Meson

    Full text link
    The QCD radiative corrections to the leptonic decay rate of the BcB_c meson are calculated using the formalism of nonrelativistic QCD (NRQCD) to separate short-distance and long-distance effects. The BcB_c decay constant is factored into a sum of NRQCD matrix elements each multiplied by a short-distance coefficient. The short-distance coefficient for the leading matrix element is calculated to order αs\alpha_s by matching a perturbative calculation in full QCD with the corresponding perturbative calculation in NRQCD. This short-distance correction decreases the leptonic decay rate by approximately 15%15\%.Comment: Changed Eq. 2 to read 1/(8 \pi), put in a missing i M_{B_c} in Eq. 18, and put in a normalisation factor of 2 M_{B_c} in Eq. 19

    Laser surface colouring of titanium for contemporary jewellery

    Get PDF
    This paper describes work which emerged through a need to understand more about the potential of laser surface engineering for use in the creative industries. The method of creation of contemporary jewellery pieces and the resultant 'Ocular' jewellery series are described from the creative point of view. The work demonstrates how laser controlled oxide growth on Ti–6Al–4V alloy under ambient conditions can be used as an artistic tool by producing precisely defined colours. Use of the method to produce regular areas of even colour and to reproduce freehand drawings on a titanium alloy surface is described. Analysis highlights interference as the main colouring mechanism and suggests a graded surface layer, progressing from an outer layer of TiO2 to lower layers rich in TiO and Ti2O. The model of research by practice presented in this paper offers a contribution to the current debate on partnerships between art and science and engineering
    • 

    corecore