8,736 research outputs found
Spatially Resolved Raman Spectroscopy of Single- and Few-Layer Graphene
We present Raman spectroscopy measurements on single- and few-layer graphene
flakes. Using a scanning confocal approach we collect spectral data with
spatial resolution, which allows us to directly compare Raman images with
scanning force micrographs. Single-layer graphene can be distinguished from
double- and few-layer by the width of the D' line: the single peak for
single-layer graphene splits into different peaks for the double-layer. These
findings are explained using the double-resonant Raman model based on ab-initio
calculations of the electronic structure and of the phonon dispersion. We
investigate the D line intensity and find no defects within the flake. A finite
D line response originating from the edges can be attributed either to defects
or to the breakdown of translational symmetry
Raman imaging of doping domains in graphene on SiO2
We present spatially resolved Raman images of the G and 2D lines of
single-layer graphene flakes. The spatial fluctuations of G and 2D lines are
correlated and are thus shown to be affiliated with local doping domains. We
investigate the position of the 2D line -- the most significant Raman peak to
identify single-layer graphene -- as a function of charging up to |n|~4 10^12
cm^-2. Contrary to the G line which exhibits a strong and symmetric stiffening
with respect to electron and hole-doping, the 2D line shows a weak and slightly
asymmetric stiffening for low doping. Additionally, the line width of the 2D
line is, in contrast to the G line, doping-independent making this quantity a
reliable measure for identifying single-layer graphene
Multi-class SVMs for Image Classification using Feature Tracking
In this paper a novel representation for image classification is proposed which exploits the temporal information inherent in natural visual input. Image sequences are represented by a set of salient features which are found by tracking of visual features. In the context of a multi-class classification problem this representation is compared against a representation using only raw image data. The dataset consists of image sequences generated from a processed version of the MPI face database. We consider two types of multi-class SVMs and benchmark them against nearest-neighbor classifiers. By introducing a new set of SVM kernel functions we show that the feature representation significantly outperforms the view representation
The method of averages applied to the KS differential equations
A new approach for the solution of artificial satellite trajectory problems is proposed. The basic idea is to apply an analytical solution method (the method of averages) to an appropriate formulation of the orbital mechanics equations of motion (the KS-element differential equations). The result is a set of transformed equations of motion that are more amenable to numerical solution
Mapping the spin-dependent electron reflectivity of Fe and Co ferromagnetic thin films
Spin Polarized Low Energy Electron Microscopy is used as a spin dependent
spectroscopic probe to study the spin dependent specular reflection of a
polarized electron beam from two different magnetic thin film systems:
Fe/W(110) and Co/W(110). The reflectivity and spin-dependent
exchange-scattering asymmetry are studied as a function of electron kinetic
energy and film thickness, as well as the time dependence. The largest value of
the figure of merit for spin polarimetry is observed for a 5 monolayer thick
film of Co/W(110) at an electron kinetic energy of 2eV. This value is 2 orders
of magnitude higher than previously obtained with state of the art Mini-Mott
polarimeter. We discuss implications of our results for the development of an
electron-spin-polarimeter using the exchange-interaction at low energy.Comment: 5 pages, 4 figure
Local oxidation of Ga[Al]As heterostructures with modulated tip-sample voltages
Nanolithography based on local oxidation with a scanning force microscope has
been performed on an undoped GaAs wafer and a Ga[Al]As heterostructure with an
undoped GaAs cap layer and a shallow two-dimensional electron gas. The oxide
growth and the resulting electronic properties of the patterned structures are
compared for constant and modulated voltage applied to the conductive tip of
the scanning force microscope. All the lithography has been performed in
non-contact mode. Modulating the applied voltage enhances the aspect ratio of
the oxide lines, which significantly strengthens the insulating properties of
the lines on GaAs. In addition, the oxidation process is found to be more
reliable and reproducible. Using this technique, a quantum point contact and a
quantum wire have been defined and the electronic stability, the confinement
potential and the electrical tunability are demonstrated to be similar to the
oxidation with constant voltage.Comment: 7 pages, 7 figures, accepted by J. Appl. Phy
Comment on "Giant Plasticity of a Quantum Crystal"
In their Letter, Haziot et al. [Phys. Rev. Lett. 110 (2013) 035301] report a
novel phenomenon of giant plasticity for hcp Helium-4 quantum crystals. They
assert that Helium-4 exhibits mechanical properties not found in classical
plasticity theory. Specifically, they examine high-quality crystals as a
function of temperature and applied strain, where the shear modulus reaches a
plateau and dissipation becomes close to zero; both quantities are reported to
be independent of stress and strain, implying a reversible dissipation process
and quantum tunneling. In this Comment, we show that these signatures can be
explained with a classical model of thermally activated dislocation glide
without the need to invoke quantum tunneling or dissipationless motion.
Recently, we proposed a dislocation glide model in solid Helium-4 containing
the dissipation contribution in the presence of other dislocations with
qualitatively similar behavior [Zhou et al., Philos. Mag. Lett. 92 (2012) 608].Comment: 1 page, 1 figure, comment; minor revision
Electronic structure of the substitutional versus interstitial manganese in GaN
Density-functional studies of the electron states in the dilute magnetic
semiconductor GaN:Mn reveal major differences for the case of the Mn impurity
at the substitutional site Mn_Ga versus the interstitial site Mn_I. The
splitting of the two-fold and the three-fold degenerate Mn(d)states in the gap
are reversed between the two cases, which is understood in terms of the
symmetry-controlled hybridization with the neighboring atoms. In contrast to
Mn_Ga, which acts as a deep acceptor, Mn_I acts as a donor, suggesting the
formation of Coulomb-stabilized complexes such as (Mn_Ga Mn_I Mn_Ga), where the
acceptor level of Mn_Ga is passivated by the Mn_I donor. Formation of such
passivated clusters might be the reason for the observed low carrier-doping
efficiency of Mn in GaN. Even though the Mn states are located well inside the
gap,the wave functions are spread far away from the impurity center. This is
caused by the hybridization with the nitrogen atoms, which acquire small
magnetic moments aligned with the Mn moment. Implications of the differences in
the electronic structure for the optical properties are discussed
- …