354 research outputs found
Demonstration of radon removal from SF6 using molecular sieves
The gas SF6 has become of interest as a negative ion drift gas for use in directional
dark matter searches. However, as for other targets in such searches, it is important that radon
contamination can be removed as this provides a source of unwanted background events. In this
work we demonstrate for the first time filtration of radon from SF6 gas by using a molecular
sieve. Four types of sieves from Sigma-Aldrich were investigated, namely 3Å, 4Å, 5Å and 13X.
A manufactured radon source was used for the tests. This was attached to a closed loop system in
which gas was flowed through the filters and a specially adapted Durridge RAD7 radon detector.
In these measurements, it was found that only the 5Å type was able to significantly reduce the
radon concentration without absorbing the SF6 gas. The sieve was able to reduce the initial radon
concentration of 3875 ± 13 Bqm−3
in SF6 gas by 87% when cooled with dry ice. The ability of
the cooled 5Å molecular sieve filter to significantly reduce radon concentration from SF6 provides
a promising foundation for the construction of a radon filtration setup for future ultra-sensitive SF6
gas rare-event physics experiments
Lowering the energy threshold in COSINE-100 dark matter searches
COSINE-100 is a dark matter detection experiment that uses NaI(Tl) crystal
detectors operating at the Yangyang underground laboratory in Korea since
September 2016. Its main goal is to test the annual modulation observed by the
DAMA/LIBRA experiment with the same target medium. Recently DAMA/LIBRA has
released data with an energy threshold lowered to 1 keV, and the persistent
annual modulation behavior is still observed at 9.5. By lowering the
energy threshold for electron recoils to 1 keV, COSINE-100 annual modulation
results can be compared to those of DAMA/LIBRA in a model-independent way.
Additionally, the event selection methods provide an access to a few to sub-GeV
dark matter particles using constant rate studies. In this article, we discuss
the COSINE-100 event selection algorithm, its validation, and efficiencies near
the threshold
Characterisation of large area THGEMs and experimental measurement of the Townsend coefficients for CF4
Whilst the performance of small THGEMs is well known, here we consider the challenges in scaling these up to large area charge readouts. We first verify the expected gain of larger THGEMs by reporting experimental Townsend coefficients for a 10 cm diameter THGEM in low-pressure CF. Large area 50 cm by 50 cm THGEMs were sourced from a commercial PCB supplier and geometrical imperfections were observed which we quantified using an optical camera setup. The large area THGEMs were experimentally characterised at Boulby Underground Laboratory through a series of gain calibrations and alpha spectrum measurements. ANSYS, Magboltz and Garfield++ simulations of the design of a TPC based on the large area THGEMs are presented. We also consider their implications for directional dark matter research and potential applications within nuclear security
First search for a dark matter annual modulation signal with NaI(Tl) in the Southern Hemisphere by DM-Ice17
We present the first search for a dark matter annual modulation signal in the Southern Hemisphere conducted with NaI(Tl) detectors, performed by the DM-Ice17 experiment. Nuclear recoils from dark matter interactions are expected to yield an annually modulated signal independent of location within the Earth’s hemispheres. DM-Ice17, the first step in the DM-Ice experimental program, consists of 17 kg of NaI(Tl) located at the South Pole under 2200 m.w.e. overburden of Antarctic glacial ice. Taken over 3.6 years for a total exposure of 60.8 kg yr, DM-Ice17 data are consistent with no modulation in the energy range of 4–20 keV, providing the strongest limits on weakly interacting massive particle dark matter from a direct detection experiment located in the Southern Hemisphere. The successful deployment and stable long-term operation of DM-Ice17 establishes the South Pole ice as a viable location for future dark matter searches and in particular for a high-sensitivity NaI(Tl) dark matter experiment to directly test the DAMA/LIBRA claim of the observation of dark matter
Long-term study of backgrounds in the DRIFT-II directional dark matter experiment
Low-pressure gas Time Projection Chambers being developed for directional dark matter searches offer a technology with strong particle identification capability combined with the potential to produce a definitive detection of Galactic Weakly Interacting Massive Particle (WIMP) dark matter. A source of events able to mimic genuine WIMP-induced nuclear recoil tracks arises in such experiments from the decay of radon gas inside the vacuum vessel. The recoils that result from associated daughter nuclei are termed Radon Progeny Recoils (RPRs). We present here experimental data from a long-term study using the DRIFT-II directional dark matter experiment at the Boulby Underground Laboratory of the RPRs, and other backgrounds that are revealed by relaxing the normal cuts that are applied to WIMP search data. By detailed examination of event classes in both spatial and time coordinates using 3.5 years of data, we demonstrate the ability to determine the origin of 4 specific background populations and describe development of new technology and mitigation strategies to suppress them
Gas Gains Over 10 and Optimisation using Fe X-rays in Low Pressure SF with a Novel Multi-Mesh ThGEM for Directional Dark Matter Searches
The Negative Ion Drift (NID) gas SF has favourable properties for track
reconstruction in directional Dark Matter (DM) searches utilising low pressure
gaseous Time Projection Chambers (TPCs). However, the electronegative nature of
the gas means that it is more difficult to achieve significant gas gains with
regular Thick Gaseous Electron Multipliers (ThGEMs). Typically, the maximum
attainable gas gain in SF and other Negative Ion (NI) gas mixtures,
previously achieved with an Fe X-ray source or electron beam, is on the
order of ; whereas electron drift gases like CF and similar mixtures
are readily capable of reaching gas gains on the order of or greater. In
this paper, a novel two stage Multi-Mesh ThGEM (MMThGEM) structure is
presented. The MMThGEM was used to amplify charge liberated by an Fe
X-ray source in 40 Torr of SF. By expanding on previously demonstrated
results, the device was pushed to its sparking limit and stable gas gains up to
50000 were observed. The device was further optimised by varying the
field strengths of both the collection and transfer regions in isolation.
Following this optimisation procedure, the device was able to produce a maximum
stable gas gain of 90000. These results demonstrate an order of magnitude
improvement in gain with the NID gas over previously reported values and
ultimately benefits the sensitivity of a NITPC to low energy recoils in the
context of a directional DM search
Initial performance of the COSINE-100 experiment
COSINE is a dark matter search experiment based on an array of low background NaI(Tl) crystals located at the Yangyang underground laboratory. The assembly of COSINE-100 was completed in the summer of 2016 and the detector is currently collecting physics quality data aimed at reproducing the DAMA/LIBRA experiment that reported an annual modulation signal. Stable operation has been achieved and will continue for at least 2 years. Here, we describe the design of COSINE-100, including the shielding arrangement, the configuration of the NaI(Tl) crystal detection elements, the veto systems, and the associated operational systems, and we show the current performance of the experiment
- …
