27 research outputs found

    Determining crystal structures through crowdsourcing and coursework

    Get PDF
    We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit players achieved the most accurate structure. Analysing the target protein of the competition, YPL067C, uncovered a new family of histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this study, we conclude that crystallographers can utilize crowdsourcing to interpret electron density information and to produce structure solutions of the highest quality

    Aids for estimating effects of underground nuclear explosions /

    No full text
    "September 8, 1970.""Nuclear Explosions-Peaceful Applications.""TID-4500, UC-35."Includes bibliographical references (page 113).Work performed at the University of California Radiation Laboratory for the U.S. Atomic Energy Commission under contract no. :Mode of access: Internet

    Some Promising Trends in Ice Mechanics

    No full text

    Macromolecular assembly of bioluminescent protein nanoparticles for enhanced imaging.

    No full text
    Bioluminescence imaging has advantages over fluorescence imaging, such as minimal photobleaching and autofluorescence, and greater signal-to-noise ratios in many complex environments. Although significant achievements have been made in luciferase engineering for generating bright and stable reporters, the full capability of luciferases for nanoparticle tracking has not been comprehensively examined. In biocatalysis, enhanced enzyme performance after immobilization on nanoparticles has been reported. Thus, we hypothesized that by assembling luciferases onto a nanoparticle, the resulting complex could lead to substantially improved imaging properties. Using a modular bioconjugation strategy, we attached NanoLuc (NLuc) or Akaluc bioluminescent proteins to a protein nanoparticle platform (E2), yielding nanoparticles NLuc-E2 and Akaluc-E2, both with diameters of ∼45 â€‹nm. Although no significant differences were observed between different conditions involving Akaluc and Akaluc-E2, free NLuc at pH 5.0 showed significantly lower emission values than free NLuc at pH 7.4. Interestingly, NLuc immobilization on E2 nanoparticles (NLuc-E2) emitted increased luminescence at pH 7.4, and at pH 5.0 showed over two orders of magnitude (>200-fold) higher luminescence (than free NLuc), expanding the potential for imaging detection using the nanoparticle even upon endocytic uptake. After uptake by macrophages, the resulting luminescence with NLuc-E2 nanoparticles was up to 7-fold higher than with free NLuc at 48 â€‹h. Cells incubated with NLuc-E2 could also be imaged using live bioluminescence microscopy. Finally, biodistribution of nanoparticles into lymph nodes was detected through imaging using NLuc-E2, but not with conventionally-labeled fluorescent E2. Our data demonstrate that NLuc-bound nanoparticles have advantageous properties that can be utilized in applications ranging from single-cell imaging to in vivo biodistribution
    corecore