361 research outputs found
Transient absorption and reshaping of ultrafast XUV light by laser-dressed helium
We present a theoretical study of transient absorption and reshaping of
extreme ultraviolet (XUV) pulses by helium atoms dressed with a moderately
strong infrared (IR) laser field. We formulate the atomic response using both
the frequency-dependent absorption cross section and a time-frequency approach
based on the time-dependent dipole induced by the light fields. The latter
approach can be used in cases when an ultrafast dressing pulse induces
transient effects, and/or when the atom exchanges energy with multiple
frequency components of the XUV field. We first characterize the dressed atom
response by calculating the frequency-dependent absorption cross section for
XUV energies between 20 and 24 eV for several dressing wavelengths between 400
and 2000 nm and intensities up to 10^12 W/cm^2. We find that for dressing
wavelengths near 1600 nm, there is an Autler-Townes splitting of the 1s ---> 2p
transition that can potentially lead to transparency for absorption of XUV
light tuned to this transition. We study the effect of this XUV transparency in
a macroscopic helium gas by incorporating the time-frequency approach into a
solution of the coupled Maxwell-Schr\"odinger equations. We find rich temporal
reshaping dynamics when a 61 fs XUV pulse resonant with the 1s ---> 2p
transition propagates through a helium gas dressed by an 11 fs, 1600 nm laser
pulse.Comment: 13 pages, 8 figures, 1 table, RevTeX4, revise
Phase Measurement of Resonant Two-Photon Ionization in Helium
We study resonant two-color two-photon ionization of Helium via the 1s3p 1P1
state. The first color is the 15th harmonic of a tunable titanium sapphire
laser, while the second color is the fundamental laser radiation. Our method
uses phase-locked high-order harmonics to determine the {\it phase} of the
two-photon process by interferometry. The measurement of the two-photon
ionization phase variation as a function of detuning from the resonance and
intensity of the dressing field allows us to determine the intensity dependence
of the transition energy.Comment: 4 pages, 5 figures, under consideratio
Molecular double core-hole electron spectroscopy for chemical analysis
We explore the potential of double core hole electron spectroscopy for
chemical analysis in terms of x-ray two-photon photoelectron spectroscopy
(XTPPS). The creation of deep single and double core vacancies induces
significant reorganization of valence electrons. The corresponding relaxation
energies and the interatomic relaxation energies are evaluated by CASSCF
calculations. We propose a method how to experimentally extract these
quantities by the measurement of single and double core-hole ionization
potentials (IPs and DIPs). The influence of the chemical environment on these
DIPs is also discussed for states with two holes at the same atomic site and
states with two holes at two different atomic sites. Electron density
difference between the ground and double core-hole states clearly shows the
relaxations accompanying the double core-hole ionization. The effect is also
compared with the sensitivity of single core hole ionization potentials (IPs)
arising in single core hole electron spectroscopy. We have demonstrated the
method for a representative set of small molecules LiF, BeO, BF, CO, N2, C2H2,
C2H4, C2H6, CO2 and N2O. The scalar relativistic effect on IPs and on DIPs are
briefly addressed.Comment: 35 pages, 6 figures. To appear in J. Chem. Phys
A priori Wannier functions from modified Hartree-Fock and Kohn-Sham equations
The Hartree-Fock equations are modified to directly yield Wannier functions
following a proposal of Shukla et al. [Chem. Phys. Lett. 262, 213-218 (1996)].
This approach circumvents the a posteriori application of the Wannier
transformation to Bloch functions. I give a novel and rigorous derivation of
the relevant equations by introducing an orthogonalizing potential to ensure
the orthogonality among the resulting functions. The properties of these,
so-called a priori Wannier functions, are analyzed and the relation of the
modified Hartree-Fock equations to the conventional, Bloch-function-based
equations is elucidated. It is pointed out that the modified equations offer a
different route to maximally localized Wannier functions. Their computational
solution is found to involve an effort that is comparable to the effort for the
solution of the conventional equations. Above all, I show how a priori Wannier
functions can be obtained by a modification of the Kohn-Sham equations of
density-functional theory.Comment: 7 pages, RevTeX4, revise
Non-Hermitian Rayleigh-Schroedinger Perturbation Theory
We devise a non-Hermitian Rayleigh-Schroedinger perturbation theory for the
single- and the multireference case to tackle both the many-body problem and
the decay problem encountered, for example, in the study of electronic
resonances in molecules. A complex absorbing potential (CAP) is employed to
facilitate a treatment of resonance states that is similar to the
well-established bound-state techniques. For the perturbative approach, the
full CAP-Schroedinger Hamiltonian, in suitable representation, is partitioned
according to the Epstein-Nesbet scheme. The equations we derive in the
framework of the single-reference perturbation theory turn out to be identical
to those obtained by a time-dependent treatment in Wigner-Weisskopf theory. The
multireference perturbation theory is studied for a model problem and is shown
to be an efficient and accurate method. Algorithmic aspects of the integration
of the perturbation theories into existing ab initio programs are discussed,
and the simplicity of their implementation is elucidated.Comment: 10 pages, 1 figure, RevTeX4, submitted to Physical Review
Quasiparticle band structure of infinite hydrogen fluoride and hydrogen chloride chains
We study the quasiparticle band structure of isolated, infinite HF and HCl
bent (zigzag) chains and examine the effect of the crystal field on the energy
levels of the constituent monomers. The chains are one of the simplest but
realistic models of the corresponding three-dimensional crystalline solids. To
describe the isolated monomers and the chains, we set out from the Hartree-Fock
approximation, harnessing the advanced Green's function methods "local
molecular orbital algebraic diagrammatic construction" (ADC) scheme and "local
crystal orbital ADC" (CO-ADC) in a strict second order approximation, ADC(2,2)
and CO-ADC(2,2), respectively, to account for electron correlations. The
configuration space of the periodic correlation calculations is found to
converge rapidly only requiring nearest-neighbor contributions to be regarded.
Although electron correlations cause a pronounced shift of the quasiparticle
band structure of the chains with respect to the Hartree-Fock result, the
bandwidth essentially remains unaltered in contrast to, e.g., covalently bound
compounds.Comment: 11 pages, 6 figures, 6 tables, RevTeX4, corrected typoe
Hydrogen bonding in infinite hydrogen fluoride and hydrogen chloride chains
Hydrogen bonding in infinite HF and HCl bent (zigzag) chains is studied using
the ab initio coupled-cluster singles and doubles (CCSD) correlation method.
The correlation contribution to the binding energy is decomposed in terms of
nonadditive many-body interactions between the monomers in the chains, the
so-called energy increments. Van der Waals constants for the two-body
dispersion interaction between distant monomers in the infinite chains are
extracted from this decomposition. They allow a partitioning of the correlation
contribution to the binding energy into short- and long-range terms. This
finding affords a significant reduction in the computational effort of ab
initio calculations for solids as only the short-range part requires a
sophisticated treatment whereas the long-range part can be summed immediately
to infinite distances.Comment: 9 pages, 4 figures, 3 tables, RevTeX4, corrected typo
Theory of x-ray absorption by laser-dressed atoms
An ab initio theory is devised for the x-ray photoabsorption cross section of
atoms in the field of a moderately intense optical laser (800nm, 10^13 W/cm^2).
The laser dresses the core-excited atomic states, which introduces a dependence
of the cross section on the angle between the polarization vectors of the two
linearly polarized radiation sources. We use the Hartree-Fock-Slater
approximation to describe the atomic many-particle problem in conjunction with
a nonrelativistic quantum-electrodynamic approach to treat the photon-electron
interaction. The continuum wave functions of ejected electrons are treated with
a complex absorbing potential that is derived from smooth exterior complex
scaling. The solution to the two-color (x-ray plus laser) problem is discussed
in terms of a direct diagonalization of the complex symmetric matrix
representation of the Hamiltonian. Alternative treatments with time-independent
and time-dependent non-Hermitian perturbation theories are presented that
exploit the weak interaction strength between x rays and atoms. We apply the
theory to study the photoabsorption cross section of krypton atoms near the K
edge. A pronounced modification of the cross section is found in the presence
of the optical laser.Comment: 13 pages, 3 figures, 1 table, RevTeX4, corrected typoe
Ethylene Glycol Poisoning: An Unusual Cause of Altered Mental Status and the Lessons Learned from Management of the Disease in the Acute Setting
Ethylene glycol is found in many household products and is a common toxic ingestion. Acute ingestions present with altered sensorium and an osmolal gap. The true toxicity of ethylene glycol is mediated by its metabolites, which are responsible for the increased anion gap metabolic acidosis, renal tubular damage, and crystalluria seen later in ingestions. Early intervention is key; however, diagnosis is often delayed, especially in elderly patients presenting with altered mental status. There are several laboratory tests which can be exploited for the diagnosis, quantification of ingestion, and monitoring of treatment, including the lactate and osmolal gaps. As methods of direct measurement of ethylene glycol are often not readily available, it is important to have a high degree of suspicion based on these indirect laboratory findings. Mainstay of treatment is bicarbonate, fomepizole or ethanol, and, often, hemodialysis. A validated equation can be used to estimate necessary duration of hemodialysis, and even if direct measurements of ethylene glycol are not available, monitoring for the closure of the anion, lactate, and osmolal gaps can guide treatment. We present the case of an elderly male with altered mental status, acute kidney injury, elevated anion gap metabolic acidosis, and profound lactate and osmolal gaps
- …