1,299 research outputs found

    3D modelling of Ti–6Al–4V linear friction welds

    Get PDF
    Linear friction welding (LFW) is a solid-state joining process that significantly reduces manufacturing costs when fabricating Ti–6Al–4V aircraft components. This article describes the development of a novel 3D LFW process model for joining Ti–6Al–4V. Displacement histories were taken from experiments and used as modelling inputs; herein is the novelty of the approach, which resulted in decreased computational time and memory storage requirements. In general, the models captured the experimental weld phenomena and showed that the thermo-mechanically affected zone and interface temperature are reduced when the workpieces are oscillated along the shorter of the two interface contact dimensions. Moreover, the models showed that unbonded regions occur at the corners of the weld interface, which are eliminated by increasing the burn-off

    2D linear friction weld modelling of a Ti-6Al-4V T-joint

    Get PDF
    Most examples of linear friction weld process models have focused on joining two identically shaped workpieces. This article reports on the development of a 2D model, using the DEFORM finite element package, to investigate the joining of a rectangular Ti-6Al-4V workpiece to a plate of the same material. The work focuses on how this geometry affects the material flow, thermal fields and interface contaminant removal. The results showed that the material flow and thermal fields were not even across the two workpieces. This resulted in more material expulsion being required to remove the interface contaminants from the weld line when compared to joining two identically shaped workpieces. The model also showed that the flash curves away from the weld due to the rectangular upstand "burrowing" into the base plate.Understanding these critical relationships between the geometry and process outputs is crucial for further industrial implementation of the LFW process.EPSRC, The Welding Institut

    On the analytic approximation of bulk collision rates of non-spherical hydrometeors

    Get PDF
    Analytic approximations of the binary collision rates of hydrometeors are derived for use in bulk microphysical parameterizations. Special attention is given to non-spherical hydrometeors like raindrops and snowflakes. The terminal fall velocity of these particles cannot be sufficiently well approximated by power-law relations which are used in most microphysical parameterizations, and therefore an improved formulation is needed. The analytic approximations of the bulk collision rates given in this paper are an alternative to look-up tables and can replace the Wisner approximation, which is used in many atmospheric models. © 2014 Author (s)

    A computationally efficient thermal modelling approach of the linear friction welding process

    Get PDF
    Numerical models used to simulate LFW rely on the modelling of the oscillations to generate heat. As a consequence, simulations are time consuming, making analysis of 3D geometries difficult. To address this, a model was developed of a Ti-6Al–4 V LFW that applied the weld heat at the interface and ignored the material deformation and expulsion which was captured by sequentially removing row of elements. The model captured the experimental trends and showed that the maximum interface temperature was achieved when a burn-off rate of between 2 and 3 mm/s occurred. Moreover, the models showed that the interface temperature is reduced when a weld is produced with a higher pressure and when the workpieces are oscillated along the shorter of the two interface dimensions. This modelling approach provides a computationally efficient foundation for subsequent residual stress modelling, which is of interest to end users of the process

    Near--K-edge double and triple detachment of the F- negative ion: observation of direct two-electron ejection by a single photon

    Full text link
    Double and triple detachment of the F-(1s2 2s2 2p6) negative ion by a single photon have been investigated in the photon energy range 660 to 1000 eV. The experimental data provide unambiguous evidence for the dominant role of direct photo-double-detachment with a subsequent single-Auger process in the reaction channel leading to F2+ product ions. Absolute cross sections were determined for the direct removal of a (1s+2p) pair of electrons from F- by the absorption of a single photon

    Dissociative recombination measurements of HCl+ using an ion storage ring

    Get PDF
    We have measured dissociative recombination of HCl+ with electrons using a merged beams configuration at the heavy-ion storage ring TSR located at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany. We present the measured absolute merged beams recombination rate coefficient for collision energies from 0 to 4.5 eV. We have also developed a new method for deriving the cross section from the measurements. Our approach does not suffer from approximations made by previously used methods. The cross section was transformed to a plasma rate coefficient for the electron temperature range from T=10 to 5000 K. We show that the previously used HCl+ DR data underestimate the plasma rate coefficient by a factor of 1.5 at T=10 K and overestimate it by a factor of 3.0 at T=300 K. We also find that the new data may partly explain existing discrepancies between observed abundances of chlorine-bearing molecules and their astrochemical models.Comment: Accepted for publication in ApJ (July 7, 2013
    • …
    corecore