3 research outputs found

    First operation with the JET International Thermonuclear Experimental Reactor-like wall

    No full text
    To consolidate International Thermonuclear Experimental Reactor (ITER) design choices and prepare for its operation, Joint European Torus (JET) has implemented ITER's plasma facing materials, namely, Be for the main wall and W in the divertor. In addition, protection systems, diagnostics, and the vertical stability control were upgraded and the heating capability of the neutral beams was increased to over 30 MW. First results confirm the expected benefits and the limitations of all metal plasma facing components (PFCs) but also yield understanding of operational issues directly relating to ITER. H-retention is lower by at least a factor of 10 in all operational scenarios compared to that with C PFCs. The lower C content (≈ factor 10) has led to much lower radiation during the plasma burn-through phase eliminating breakdown failures. Similarly, the intrinsic radiation observed during disruptions is very low, leading to high power loads and to a slow current quench. Massive gas injection using a D2/Ar mixture restores levels of radiation and vessel forces similar to those of mitigated disruptions with the C wall. Dedicated L-H transition experiments indicate a 30% power threshold reduction, a distinct minimum density, and a pronounced shape dependence. The L-mode density limit was found to be up to 30% higher than for C allowing stable detached divertor operation over a larger density range. Stable H-modes as well as the hybrid scenario could be re-established only when using gas puff levels of a few 1021 es−1. On average, the confinement is lower with the new PFCs, but nevertheless, H factors up to 1 (H-Mode) and 1.3 (at βN≈3 , hybrids) have been achieved with W concentrations well below the maximum acceptable level

    Efficacy and safety of low-dose aspirin in polycythemia vera

    No full text
    BACKGROUND: The use of aspirin for the prevention of thrombotic complications in polycythemia vera is controversial. METHODS: We enrolled 518 patients with polycythemia vera, no clear indication for aspirin treatment, and no contraindication to such treatment in a double-blind, placebo-controlled, randomized trial to assess the safety and efficacy of prophylaxis with low-dose aspirin (100 mg daily). The two primary end points were the cumulative rate of nonfatal myocardial infarction, nonfatal stroke, or death from cardiovascular causes and the cumulative rate of nonfatal myocardial infarction, nonfatal stroke, pulmonary embolism, major venous thrombosis, or death from cardiovascular causes. The mean duration of follow-up was about three years. RESULTS: Treatment with aspirin, as compared with placebo, reduced the risk of the combined end point of nonfatal myocardial infarction, nonfatal stroke, or death from cardiovascular causes (relative risk, 0.41; 95 percent confidence interval, 0.15 to 1.15; P=0.09) and the risk of the combined end point of nonfatal myocardial infarction, nonfatal stroke, pulmonary embolism, major venous thrombosis, or death from cardiovascular causes (relative risk, 0.40; 95 percent confidence interval, 0.18 to 0.91; P=0.03). Overall mortality and cardiovascular mortality were not reduced significantly. The incidence of major bleeding episodes was not significantly increased in the aspirin group (relative risk, 1.62; 95 percent confidence interval, 0.27 to 9.71). CONCLUSIONS: Low-dose aspirin can safely prevent thrombotic complications in patients with polycythemia vera who have no contraindications to such treatment
    corecore