381 research outputs found

    Scattering through a straight quantum waveguide with combined boundary conditions

    Full text link
    Scattering through a straight two-dimensional quantum waveguide Rx(0,d) with Dirichlet boundary conditions on (-\infty,0)x{y=0} \cup (0,\infty)x{y=d} and Neumann boundary condition on (-infty,0)x{y=d} \cup (0,\infty)x{y=0} is considered using stationary scattering theory. The existence of a matching conditions solution at x=0 is proved. The use of stationary scattering theory is justified showing its relation to the wave packets motion. As an illustration, the matching conditions are also solved numerically and the transition probabilities are shown.Comment: 26 pages, 3 figure

    On the spectrum and weakly effective operator for Dirichlet Laplacian in thin deformed tubes

    Get PDF
    We study the Laplacian in deformed thin (bounded or unbounded) tubes in ?R3\R^3, i.e., tubular regions along a curve r(s)r(s) whose cross sections are multiplied by an appropriate deformation function h(s)>0h(s)> 0. One the main requirements on h(s)h(s) is that it has a single point of global maximum. We find the asymptotic behaviors of the eigenvalues and weakly effective operators as the diameters of the tubes tend to zero. It is shown that such behaviors are not influenced by some geometric features of the tube, such as curvature, torsion and twisting, and so a huge amount of different deformed tubes are asymptotically described by the same weakly effective operator

    Exponential splitting of bound states in a waveguide with a pair of distant windows

    Full text link
    We consider Laplacian in a straight planar strip with Dirichlet boundary which has two Neumann ``windows'' of the same length the centers of which are 2l2l apart, and study the asymptotic behaviour of the discrete spectrum as ll\to\infty. It is shown that there are pairs of eigenvalues around each isolated eigenvalue of a single-window strip and their distances vanish exponentially in the limit ll\to\infty. We derive an asymptotic expansion also in the case where a single window gives rise to a threshold resonance which the presence of the other window turns into a single isolated eigenvalue

    Spectral flow and level spacing of edge states for quantum Hall hamiltonians

    Full text link
    We consider a non relativistic particle on the surface of a semi-infinite cylinder of circumference LL submitted to a perpendicular magnetic field of strength BB and to the potential of impurities of maximal amplitude ww. This model is of importance in the context of the integer quantum Hall effect. In the regime of strong magnetic field or weak disorder B>>wB>>w it is known that there are chiral edge states, which are localised within a few magnetic lengths close to, and extended along the boundary of the cylinder, and whose energy levels lie in the gaps of the bulk system. These energy levels have a spectral flow, uniform in LL, as a function of a magnetic flux which threads the cylinder along its axis. Through a detailed study of this spectral flow we prove that the spacing between two consecutive levels of edge states is bounded below by 2παL12\pi\alpha L^{-1} with α>0\alpha>0, independent of LL, and of the configuration of impurities. This implies that the level repulsion of the chiral edge states is much stronger than that of extended states in the usual Anderson model and their statistics cannot obey one of the Gaussian ensembles. Our analysis uses the notion of relative index between two projections and indicates that the level repulsion is connected to topological aspects of quantum Hall systems.Comment: 22 pages, no figure

    On perturbations of Dirac operators with variable magnetic field of constant direction

    Full text link
    We carry out the spectral analysis of matrix valued perturbations of 3-dimensional Dirac operators with variable magnetic field of constant direction. Under suitable assumptions on the magnetic field and on the pertubations, we obtain a limiting absorption principle, we prove the absence of singular continuous spectrum in certain intervals and state properties of the point spectrum. Various situations, for example when the magnetic field is constant, periodic or diverging at infinity, are covered. The importance of an internal-type operator (a 2-dimensional Dirac operator) is also revealed in our study. The proofs rely on commutator methods.Comment: 12 page

    Statistical Mechanics for Unstable States in Gel'fand Triplets and Investigations of Parabolic Potential Barriers

    Full text link
    Free energies and other thermodynamical quantities are investigated in canonical and grand canonical ensembles of statistical mechanics involving unstable states which are described by the generalized eigenstates with complex energy eigenvalues in the conjugate space of Gel'fand triplet. The theory is applied to the systems containing parabolic potential barriers (PPB's). The entropy and energy productions from PPB systems are studied. An equilibrium for a chemical process described by reactions A+CBAC+BA+CB\rightleftarrows AC+B is also discussed.Comment: 14 pages, AmS-LaTeX, no figur

    Asymptotic behaviour of the spectrum of a waveguide with distant perturbations

    Full text link
    We consider the waveguide modelled by a nn-dimensional infinite tube. The operator we study is the Dirichlet Laplacian perturbed by two distant perturbations. The perturbations are described by arbitrary abstract operators ''localized'' in a certain sense, and the distance between their ''supports'' tends to infinity. We study the asymptotic behaviour of the discrete spectrum of such system. The main results are a convergence theorem and the asymptotics expansions for the eigenvalues. The asymptotic behaviour of the associated eigenfunctions is described as well. We also provide some particular examples of the distant perturbations. The examples are the potential, second order differential operator, magnetic Schroedinger operator, curved and deformed waveguide, delta interaction, and integral operator

    Do Bosons Condense in a Homogeneous Magnetic Field?

    Full text link
    corecore