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We study the Laplacian in deformed thin (bounded or unbounded) tubes in R
3, i.e.,

tubular regions along a curve r(s) whose cross sections are multiplied by an appropriate
deformation function h(s) > 0. One of the main requirements on h(s) is that it has a
single point of global maximum. We find the asymptotic behaviors of the eigenvalues and
weakly effective operators as the diameters of the tubes tend to zero. It is shown that such
behaviors are not influenced by some geometric features of the tube, such as curvature,
torsion and twisting, and so a huge amount of different deformed tubes are asymptotically
described by the same weakly effective operator.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The Laplacian in tubular domains has been studied in various situations [4,8,10,18]. A common tubular region Ω is as
follows: let I ⊆ R be an interval of R, r : I → R

3 a curve in R
3, parametrized by its arc length s, and k(s) and τ (s) denote

its curvature and torsion at the point s ∈ I , respectively. Let S be an open, bounded, simply connected and nonempty
subset of R

2. Move the region S along r(s) and at each point s allow the region to rotate by an angle α(s) (see details
in Section 2). A problem of interest is the description of the spectral properties of the Laplacian in such tubes and weakly
effective operators (see the definition just after Theorem 1.1) when the region Ω is “squeezed” to the curve r(s), that is,
one considers the sequence of tubes Ωε generated by the cross section εS and analyze the limit ε → 0.

Let −�ε be the Dirichlet Laplacian in Ωε . For bounded tubes, i.e., when I is a bounded interval of R, the spectrum
of −�ε is purely discrete because in this case its resolvent is compact. In [4] it was analyzed the convergence of the
eigenvalues {λε

i : i ∈ N} as ε → 0 and shown that

λε
i = λ0

ε2
+ με

i , με
i → μi,

where λ0 is the first, i.e., the lowest, eigenvalue of the Laplacian in the Sobolev space H1
0(S), and μi are the eigenvalues of

the one-dimensional operator

w(s) �→ −w ′′(s) +
[

C(S)
(
τ (s) + α′(s)

) − k(s)2

4

]
w(s), (1)

acting in L2(I). Here C(S) is a nonnegative number depending only on the transverse region S [4]. Note that this effective
operator explicitly depends on the geometric shape of the reference curve r(s) (and so of the tube).
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An interesting problem is to know if there exists a similar result about convergence of eigenvalues for unbounded tubes.
For such tubes, in [18] it is shown that if (τ + α′)(s) = 0 and k(s) �= 0, then the discrete spectrum is nonempty, whereas
if (τ + α′)(s) �= 0 and k(s) = 0, then the discrete spectrum is empty. In [8], by using Γ -convergence in case of unbounded
tubes, a strong resolvent convergence was proven and the same action (1) for the respective effective operator (now acting
in L2(R)) was found as ε → 0.

The Dirichlet Laplacian in strips of R
2 has been studied in many works [2,14,13,19]. For the case of the constraints of

planar motion to curves there are results about the limit operator in [9,1], and the effective potential is written in terms
of the curvature. The main novelty, when we pass from planar domain to tubes in R

3, as considered in [4,8,18,15], is the
additional presence of torsion and twisting (i.e., a nonzero τ (s)+α′(s)) in the effective potential, since the case of untwisted
tubes has also been previously studied (see, for instance, [10,6,7,11,12,17]).

In [14,13] the authors consider a family of deformed strips{
(s, y) ∈ R

2: s ∈ J , 0 < y < εh(s)
}
,

where J = [−a,b], 0 < a,b � ∞, and h(s) > 0 is a continuous function satisfying:

(i) h(s) is a C1 function in J \ {0} and ‖h′/h‖∞ < ∞;
(ii) near the origin h behaves as

h(s) = M − s2 + O
(|s|3), M > 0, (2)

and s = 0 is a single point of global maximum for h;
(iii) in case I = R it is assumed that lim sup|s|→∞ h(s) < M .

In what follows we assume that h satisfies the above conditions.
It was shown [14,13] that, for ε small enough, the discrete spectrum of the Laplacian is always nonempty and the

eigenvalues λ j(ε) have the following behavior

μ j = lim
ε→0

ε

(
λ j(ε) − π2

ε2M2

)
,

where μ j are the eigenvalues of the operator in L2(R) (it acts on a subspace of L2(R), independently if the interval I is
bounded or not) given by

(T w)(s) = −w ′′(s) + 2
π2

M3
s2 w(s),

so that we say that T is a weakly effective operator (WEO) in such situation.
In this work we show that these results hold in a more general setting. We consider a sequence of tubes Ωε in the

space R
3, as presented at the beginning of this Introduction, but we deform them by multiplying their cross sections by

the above function h(s). Here the tubes may be bounded or not. Then we analyze the asymptotic behavior of eigenvalues
and the weakly effective operators in the limit ε → 0. The situation here differs from [14,13], since besides the different
dimensions (we consider regions in 3-dimensional space), the reference curves defining our tubes are allowed to have
nontrivial curvatures and torsion. These tubes, which we shall call deformed tubes, will generically be denoted by Λε (see
details in Section 2).

Our main goal is to study how curvature and torsion of the reference curve, together with the deforming function h,
influence the WEO and eigenvalues as ε → 0. To this end, we introduce some notation right now. Recall that λ0 is the
lowest eigenvalue of the negative Laplacian with Dirichlet conditions in the region S , and let u0 be the corresponding
(positive) normalized eigenfunction, that is,

−�u0 = λ0u0, u0 ∈ H1
0(S),

∫
S

u0(y)2 dy = 1. (3)

Furthermore, denote by L the subspace of L2(I × S) generated by functions w(s)u0(y) with w ∈ L2(I).
We study three distinct cases. First, the tubes are bounded since the interval I is of the form I = [−a,b] with 0 <

a,b < ∞, and we consider the Dirichlet condition at the boundary ∂Λε . In the second case, the tubes are bounded but the
Dirichlet condition at the vertical part of the ∂Λε , that is, {(−a) × S ∪ b × S}, is replaced by Neumann. In the third case we
consider I = R with Dirichlet condition at ∂Λε .

If the tubes are not deformed, according to the results of [4,8], the effective operator (1) presents an additional potential

C(S)
(
τ + α′)(s) − k2(s)/4

derived from geometric features of the tube. Hence, here there is a kind of competition between geometric properties of
the tube and the behavior at its single maximum of the deformation function h. Roughly speaking, it is expected that the
behavior of h at the single maximum will control the limit ε → 0, since the geometric effects give a contribution of order
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zero, whereas the single maximum of the deformation function h gives a contribution of order 1/ε. However, this requires
a proof which turns out to be far from trivial, and so for the three cases mentioned in the previous paragraph, we prove
the following result:

Theorem 1.1. Let I denote either R or a bounded interval [−a,b] as above; in case I = R assume that lim|s|→∞ k(s) = 0. If l j(ε)

denote the eigenvalues of the Dirichlet −�ε in the deformed tube Λε , then, the limits

μ j = lim
ε→0

ε

(
l j(ε) − λ0

ε2M2

)
(4)

exist, where μ j = (2 j + 1)(2λ0/M3)1/2 are the eigenvalues of the self-adjoint operator T , acting in L2(R), given by

(T u)(s) = −u′′(s) + 2
λ0

M3
s2u(s). (5)

Due to the conclusions of Theorem 1.1, T is a WEO for −�ε as ε → 0. Note that T has purely discrete spectrum since
the potential

V (s) = 2
λ0

M3
s2 → ∞, |s| → ∞;

in this case it is the harmonic oscillator potential (but see (7) below). Therefore, for deformed tubes as above, the weakly
effective operators T do not depend on some geometric features of the tube, although the curvature of the reference curve
must vanish at infinity. The additional potential V (s) is related to the behavior of h(s) near it maximum (at the origin).
Hence, the eigenvalues of the Laplacian in quite different deformed tubes are described by the same WEO as ε → 0!

In Section 2 we present a detailed construction of the deformed tubes Λε . Our study and technique are focused on
analyzing the sequence of quadratic forms

Fε(ψ) =
∫
Λε

(
|∇ψ |2 − λ0

ε2M2
|ψ |2

)
dx, dom Fε = H1

0(Λε). (6)

In Section 3 it will become clear why we subtract terms of the form λ0/(ε
2M2)|ψ |2 from the quadratic forms; we think

this is in fact a natural choice. In Section 3 we also perform a change of variables so that the integration region and the
corresponding domains in (6) remain fixed. In Section 4, we show that our analysis can be restricted to a specific subspace;
we will see that this subspace can be identified with the Sobolev space H1

0(I), and we call this fact a reduction of dimension.
Finally, in Sections 5, 6 and 7, we discuss details of the three cases previously mentioned.

We remark that although we rely on [14,13], the generalization to our setting is not immediate and different techniques
are added to those of the original works. Furthermore, as an alternative to (2), all results can be easily adapted to cover
more general deformation functions h(s), as considered in [14,13], so that near the unique global maximum at the origin
they behave as

h(s) =
{

M − c+sm + O (sm+1), if s > 0,

M − c−|s|m + O (|s|m+1), if s < 0
(7)

for some positive numbers M,m, c± . For the sake of simplicity, in Eq. (2) we have particularized to m = 2 and c+ = c− = 1.
An interesting problem would be if the maximum of h would be reached at an interval of values of the parameter s

instead of a single point (see [3] for results in this direction in case of bounded domains, as well as [5,16]); we are currently
working on a related problem.

2. Geometry of the tubes

Let I = [−a,b], with either 0 < a,b < ∞ or a = b = ∞, be an interval of R, r : I ⊆ R → R
3 a simple C2 curve in R

3

parametrized by its arc length parameter s and, as in the previous section, k(s) is its curvature. The vectors

T (s) = r′(s), N(s) = 1

k(s)
T ′(s), B(s) = T (s) × N(s),

denote, respectively, the tangent, normal and binormal vectors of the curve. We assume that Frenet equations are satisfied,
that is,( T ′

N ′
B ′

)
=

( 0 k 0
−k 0 τ
0 −τ 0

)( T
N
B

)
,

where τ (s) is the torsion of the curve r(s).
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Let S be an open, bounded, simply connected and nonempty subset of R
2. The set

Ω = {
x ∈ R

3: x = r(s) + y1N(s) + y2 B(s), s ∈ I, y = (y1, y2) ∈ S
}

is obtained by translating the region S along the curve r. At each point r(s) we allow a rotation of the region S by an angle
α(s) with respect to α(0) = 0, such that the new region is given by

Ωα = {
x ∈ R

3: x = r(s) + y1Nα(s) + y2 Bα(s), s ∈ I, (y1, y2) ∈ S
}
,

where

Nα(s) := cosα(s)N(s) + sinα(s)B(s),

Bα(s) := − sinα(s)N(s) + cosα(s)B(s).

Next, for each 0 < ε < 1, we “squeeze” the cross sections of the above region, that is, we consider

Ωα
ε = {

x ∈ R
3: x = r(s) + εy1Nα(s) + εy2 Bα(s), s ∈ I, (y1, y2) ∈ S

}
.

Note that Ωα
ε approaches the curve r(s) as ε → 0.

Finally, we consider the function h(s) defined in the Introduction, such that each region Ωα
ε is properly deformed, and

the result is

Λα
ε := {

x ∈ R
3: x = r(s) + εh(s)y1Nα(s) + εy2h(s)Bα(s), s ∈ I, (y1, y2) ∈ S

}
.

From now on we will omit the symbol α in most notations and write dx = ds dy1 dy2 and dy = dy1 dy2.
In this work we study the behavior of a free quantum particle that moves in Λε , and initially with Dirichlet boundary

condition at the boundary ∂Λε . Thus, we initially consider the family of quadratic forms

bε(ψ) :=
∫
Λε

|∇ψ |2 dx, dom bε = H1
0(Λε), (8)

which is associated with the Dirichlet Laplacian operator −�ε in Λε . The symbol ∇ = (∂s,∇y), ∇y = (∂y1 , ∂y2 ), denotes the
gradient in the coordinates (s, y1, y2) in R

3.

3. Quadratic forms

As usual in this kind of problems, in this section we perform a change of variables so that the integration region in (8),
and consequently the domains, become independent of ε > 0. Then, for the singular limit ε → 0, customary “regularizations”
will be employed.

Consider the mapping

fε : I × S → Λε

(s, y1, y2) �→ r(s) + εh(s)
(

y1Nα(s) + y2 Bα(s)
)
,

and suppose the boundedness ‖k‖∞,‖τ‖∞,‖α′‖∞ < ∞. These conditions are to guarantee that fε will be a diffeomorphism.
With this change of variables we work with a fixed region for all ε > 0; more precisely, the domain of the quadratic form (8)
turns out to be H1

0(I × S). On the other hand, the price to be paid is a nontrivial Riemannian metric G = Gα
ε which is

induced by fε , i.e.,

G = (Gij), Gij = 〈ei, e j〉 = G ji, 1 � i, j � 3,

where

e1 = ∂ fε
∂s

, e2 = ∂ fε
∂ y1

, e3 = ∂ fε
∂ y2

.

Some calculations show that in the Frenet frame

J =
( e1

e2
e3

)

=
(

βε −εh(τ + α′)〈z⊥
α , y〉 + εh′〈zα, y〉 εh(τ + α′)〈zα, y〉 + εh′〈z⊥

α , y〉
0 εh cosα εh sinα
0 −εh sinα εh cosα

)
,

where

βε(s, y) = 1 − εh(s)k(s)〈zα, y〉, zα := (cosα,− sinα), z⊥
α := (sinα, cosα).
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The inverse matrix of J is given by

J−1 =
⎛
⎜⎝

1
βε

1
βε

[(τ + α′)y2 − h′
h y1] 1

βε
[−(τ + α′)y1 − h′

h y2]
0 cosα

εh
− sinα

εh

0 sinα
εh

cosα
εh

⎞
⎟⎠ .

Note that J J t = G and det J = |det G|1/2 = ε2h2(s)βε(s, y). Since k and h are bounded functions, for ε small enough
βε does not vanish in I × S . Thus, βε > 0 and fε is a local diffeomorphism. By requiring that fε is injective (that is, the
tube is not self-intersecting), a global diffeomorphism is obtained.

Introducing the notation

‖ψ‖2
G :=

∫
I×S

∣∣ψ(s, y)
∣∣2

ε2h2(s)βε(s, y)ds dy,

we obtain a sequence of quadratic forms

b̃ε(ψ) := ∥∥ J−1∇ψ
∥∥

G , dom b̃ε = H1
0(I × S, G).

More precisely, the above change of coordinates was obtained by a unitary transformation

Uε : L2(Λε) → L2(I × S, G)

φ �→ φ ◦ fε.

However, we still denote Uεψ by ψ .
Recall that λ0 is the lowest eigenvalue of the negative Laplacian with Dirichlet boundary conditions in the cross section

region S , and u0 � 0 (see Eq. (3)) the corresponding eigenfunction of this restricted problem. This eigenfunction u0 is
directly related to transverse oscillations in Λε . Due to this fact, in [4,8] the authors have remove the diverging energy λ0/ε

2

from their quadratic forms. In our case, as the boundary of the tubes was multiplied by h(s), we subtract the terms of the
form λ0/(εM)2, i.e., since 0 < h(s) � M , for all s ∈ I , we eliminate the possible “least transverse energy.”

Therefore, we turn to the study of the sequence of quadratic forms

g̃ε(ψ) := (∥∥ J−1∇ψ
∥∥2

G − λ0

ε2M2
‖ψ‖2

G + c‖ψ‖2
G

)
,

where c is a positive constant to be chosen later on. After the norms are written out, we obtain

g̃ε(ψ) = ε2
∫

I×S

(
1

β2
ε (s, y)

∣∣∣∣ψ ′ + ∇yψ · R y
(
τ + α′)(s) − ∇yψ · y

h′(s)

h(s)

∣∣∣∣
2

+ |∇yψ |2
ε2h(s)2

− λ0

ε2M2
|ψ |2 + c|ψ |2

)
h(s)2βε(s, y)ds dy.

Note that dom g̃ε = H1
0(I × S) is a subspace of L2(I × S,h(s)2βε(s, y)). We observe that the factor |∇yψ |2/(εh(s))2 is

directly related to transverse oscillations of the particle. This term diverges as ε → 0, but we control this fact by subtracting
λ0/(εM)2|ψ |2 from the quadratic form (a renormalization).

It will be convenient to work in the space L2(I × S, βε(s, y)); so we consider the isometry

L2(I × S, βε) → L2(I × S,h(s)2βε

)
v �→ vh−1.

This change of variables and the division by the global factor ε2 (a common singular factor due to the “change of dimension”
as ε → 0) leads to

ĝε(v) :=
∫

I×S

(
1

βε(s, y)

∣∣∣∣v ′ − v
h′(s)

h(s)
+ ∇y v · R y

(
τ + α′)(s) − ∇y v · y

h′(s)

h(s)

∣∣∣∣
2

+ βε(s, y)

ε2h(s)2
|∇y v|2 − βε(s, y)

ε2M2
|v|2 + cβε(s, y)|v|2

)
ds dy,

with dom ĝε = H1
0(I × S), again as a subspace of L2(I × S, βε(s, y)). However, this latter space can be identified with

L2(I × S), for all ε > 0, since βε(s, y) converges uniformly to 1 as ε → 0. Hence we introduce the form
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gε(v) :=
∫

I×S

(∣∣∣∣v ′ − v
h′(s)

h(s)
+ ∇y v · R y

(
τ + α′)(s) − ∇y v · y

h′(s)

h(s)

∣∣∣∣
2

+ βε(s, y)

ε2h(s)2
|∇y v|2 − βε(s, y)

ε2M2
|v|2 + c|v|2

)
ds dy,

with dom gε = H1
0(I × S).

Let Ĝε and Gε be the self-adjoint operators associated with the quadratic forms ĝε and gε , respectively.

Theorem 3.1. For ε small enough, there exists C > 0 such that∥∥Ĝ−1
ε − G−1

ε

∥∥ � Cε.

This theorem follows basically from the fact that βε(s, y) → 1 uniformly as ε → 0. Its proof is presented in Appendix A.
Due to the above changes of variables and Theorem 3.1, we may consider the sequence of quadratic forms gε in what

follows.

4. Reduction of dimension

Recall that u0(y) is the positive and normalized eigenfunction corresponding to the first eigenvalue λ0 of the Laplacian
in H1

0(S). After the orthogonal decomposition L2(I × S) = L ⊕ L⊥ , for ψ ∈ L2(I × S), we can write

ψ(s, y) = w(s)u0(y) + η(s, y),

with w ∈ L2(I) and η ∈ L⊥ . We observe that η ∈ L⊥ implies∫
S

u0(y)η(s, y)dy = 0, a.e. [s].

Note that wu0 ∈ H1
0(I × S) if w ∈ H1

0(I). For ψ ∈ H1
0(I× S), write ψ = wu0 +η with w ∈ H1

0(I) and η ∈ H1
0(I× S)∩ L⊥ .

First we study the quadratic form gε restricted to the subspace H1
0(I × S) ∩ L. For w ∈ H1

0(I), some calculations show
that

gε(wu0) =
∫
I

[∣∣w ′∣∣2 + ϑ(s)|w|2 + ζε(s, y)

(
λ0

ε2h2(s)
− λ0

ε2M2

)
|w|2 + c|w|2

]
ds,

where

ϑ(s) = C1(S)
(
τ (s) + α′(s)

)2 + (
C2(S) − 1

)(h′(s)

h(s)

)2

− 2C3(S)
(
τ (s) + α′(s)

)h′(s)

h(s)

and

ζε(s, y) = 1 − εk(s)h(s)
〈
zα(s), F (S)

〉
.

The constants C1(S), C2(S) and C3(S) that appear in the definition of ϑ depend only on the region S and are explicitly
given by

C1(S) =
∫
S

∣∣〈∇yu0, R y〉∣∣2
dy, C2(S) =

∫
S

∣∣〈∇yu0, y〉∣∣2
dy,

and

C3(S) =
∫
S

〈∇yu0, R y〉〈∇yu0, y〉dy.

The vector F (S) = (F1(S), F2(S)) in the definition of ζε also depends only on the region S , and its components are given by

F1(S) =
∫
S

y1|u0|2 dy and F2(S) =
∫
S

y2|u0|2 dy.

Under such restrictions, the quadratic form bε in H1
0(I) can be written in terms of the form tε = tε,c given by

tε(w) := gε(wu0) =
∫ (∣∣w ′∣∣2 + Wε(s)|w|2)ds, (9)
I
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with

Wε(s) := ϑ(s) + c + ζε(s, y)

(
λ0

ε2h2(s)
− λ0

ε2M2

)
. (10)

We choose the constant c such that c > ‖v‖∞ + (1/M2)‖k(s)2/4‖∞ .
Since k(s) and h(s) are bounded functions, there exist ε1 > 0 and δ > 0 such that, for all s ∈ I ,

1 − εk(s)h(s)
〈
zα(s), F (S)

〉
> δ and 1 − εk(s)h(s)

〈
zα(s), y

〉
> δ,

for all ε < ε1. In what follows, we tacitly assume that ε < ε1.
The self-adjoint operator associated with tε in L2(I) is

(Tε,c w)(s) := −w ′′(s) + Wε(s)w(s), dom Tε,c = H2(I) ∩ H1
0(I).

From now on we denote by −�ε,c the operator −�ε + c1 and write Tε = Tε,c − c1. Next we discuss how the resolvent
operator (−�ε,c − λ0/ε

2M21)−1 can be approximated by T −1
ε,c ⊕ 0, where 0 is the null operator on the subspace L⊥ . Such

result gives a quantitative indication of how −�ε is approximated by Tε .

Lemma 4.1. Suppose that I is a bounded interval. Then, there exists C6 > 0 such that

tε(w) � C−1
6 ε−1

∫
I

|w|2 ds, ∀w ∈ H1
0(I), 0 < ε < ε1.

By noting that

ε2Wε(s)

s2
� λ0

s2
δ

(
1

h(s)2
− 1

M2

)
,

the proof of Lemma 4.1 is similar to the proof of Lemma 2.1 in [14], and it will not be reproduced here.
By following [4], for each ξ ∈ R

2, we consider the following perturbed problem

−div
[(

1 − (ξ · y)
)∇yu

] = λ
(
1 − (ξ · y)

)
u, u ∈ H1

0(S).

By taking ξ = εh(s)k(s)zα , for ε small enough, the perturbed operator is positive and with compact resolvent. Denote by
λ(ξ) > 0 its first eigenvalue, i.e.,

λ(ξ) = inf
{u∈H1

0(S): u �=0}

∫
S(1 − (ξ · y))|∇yu|2 dy∫

S(1 − (ξ · y))|u|2 dy
.

Thus, for v ∈ H1
0(I × S),

1

ε2

∫
S

βε(s, y)
(|∇y v|2 − λ0|v|2)dy � γε(s)

∫
S

βε(s, y)|v|2 dy a.e. [s], (11)

where

γε(s) := λ(εh(s)k(s)zα(s)) − λ0

ε2
.

Using the fact that h(s) and k(s) are bounded functions, it is possible to prove that γε(s) converges uniformly as ε → 0
to a bounded function (see Proposition 4.1 in [4]). This will be used in the proof of Lemma 4.2.

Lemma 4.2. Let I denote either R or a bounded interval. Then, for η ∈ H1
0(I × S) ∩ L⊥ , there exists C7 ∈ R such that, for ε small

enough,

gε(η) � C7

ε2M2
‖η‖2.

Proof. Let λ1 be the second eigenvalue of the Laplacian in H1
0(S), and pick η ∈ H1

0(I × S) ∩ L⊥ .
Since h(s) � M , for all s ∈ I , we have∫

βε(s, y)

( |∇yη|2
ε2h(s)2

− λ1
|η|2
ε2M2

)
dy �

∫
βε(s, y)

( |∇yη|2
ε2M2

− λ1
|η|2
ε2M2

)
dy.
S S
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By (11), it follows that∫
S

βε(s, y)

( |∇yη|2
ε2M2

− λ1
|η|2
ε2M2

)
dy � γε(s)

M2

∫
S

βε(s, y)|η|2 dy.

Since γε(s) converges uniformly as ε → 0, there exists C8 ∈ R such that, for ε small enough,

γε(s)

M2
� C8, ∀s ∈ I.

Thus,

γε(s)

M2

∫
S

βε(s, y)|η|2 dy � C8

∫
S

βε(s, y)|η|2 dy,

and so∫
I×S

βε(s, y)

( |∇yη|2
ε2h(s)2

− λ1
|η|2
ε2M2

)
dy ds � C8

∫
I×S

βε(s, y)|η|2 dy ds.

Adding and subtracting the term λ0
ε2 M2

∫
I×S βε(s, y)|η|2 dy ds on the left hand side of the above inequality, we obtain

∫
I×S

βε(s, y)

( |∇yη|2
ε2h(s)2

− λ0
|η|2
ε2M2

)
dy ds � C8

∫
I×S

βε(s, y)|η|2 dy + (λ1 − λ0)

ε2M2

∫
I×S

βε(s, y)|η|2 dy ds.

Now, for ε small enough, there exists C9 such that

gε(η) �
∫

I×S

βε(s, y)

( |∇yη|2
ε2h(s)2

− λ0
|η|2
ε2M2

)
dy ds + c

∫
I×S

|η|2 dy ds

� C8δ

∫
I×S

|η|2 dy ds + (λ1 − λ0)

ε2M2

∫
I×S

βε(s, y)|η|2 dy ds + c

∫
I×S

|η|2 dy ds

� C9

ε2M2

∫
I×S

βε(s, y)|η|2 dy ds

� C9

ε2M2
δ

∫
I×S

|η|2 dy ds.

Finally, it is enough to take C7 = C9δ to complete the proof of the lemma. �
Now we are ready to state and prove the main result of this section; it will rest on results presented in Section 3 of [13],

combined with the previous lemmas.

Theorem 4.3. Let I denote either R or a bounded interval. Then there exists C10 > 0 such that, for ε small enough,∥∥∥∥
(

−�ε,c − λ0

ε2M2
1
)−1

− (
T −1
ε,c ⊕ 0

)∥∥∥∥ � C10ε
3/2,

where 0 denotes the null operator on the subspace L⊥ .

Proof. For ψ ∈ H1
0(I × S) write

ψ(s, y) = w(s)u0(y) + η(s, y),

with w ∈ H1
0(I) and η ∈ H1

0(I × S) ∩ L⊥ . Thus, the quadratic form gε(ψ) can be rewritten as

gε(ψ) = tε(w) + gε(η) + 2mε(wu0, η),

where tε(w) = gε(wu0) (see (9)) and
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mε(wu0, η) =
∫

I×S

dy ds

[(
w ′u0 − wu0

h′

h
+ w∇yu0 · R y

(
τ + α′) − w∇yu0 · y

h′

h

)

×
(
η′ − η

h′

h
+ ∇yη · R y

(
τ + α′) − ∇yη · y

h′

h

)]

−
∫

I×S

dy ds k(s)h(s)〈zα, y〉w

(∇yu0∇yη

εh2
− λ0

u0η

εM2

)
.

We are going to show that tε(w), gε(η) and mε(wu0, η) satisfy the conditions (3.2), (3.3), (3.4) and (3.5) in Section 3
of [13], and so the theorem will follow. Conditions (3.2), (3.3) and (3.4) are obtained by applying Lemmas 4.1 and 4.2 above.
We need only to verify condition (3.5), i.e., that there exists a function q(ε) such that for each ψ ∈ H1

0(I × S)∣∣mε(wu0, η)
∣∣2 � q(ε)2tε(w)gε(η), q(ε) → 0 (ε → 0). (12)

We write

mε(wu0, η) = m1
ε(wu0, η) − m2

ε(wu0, η) + m3
ε(wu0, η) − m4

ε(wu0, η) − m5
ε(wu0, η),

where

m1
ε(wu0, η) :=

∫
I×S

w ′u0

(
η′ − η

h′

h
+ ∇yη · R y

(
τ + α′) − ∇yη · y

h′

h

)
ds dy,

m2
ε(wu0, η) :=

∫
I×S

wu0
h′

h

(
η′ − η

h′

h
+ ∇yη · R y

(
τ + α′) − ∇yη · y

h′

h

)
ds dy,

m3
ε(wu0, η) :=

∫
I×S

w∇yu0 · R y
(
τ + α′)(η′ − η

h′

h
+ ∇yη · R y

(
τ + α′) − ∇yη · y

h′

h

)
dy ds,

m4
ε(wu0, η) :=

∫
I×S

w∇yu0 · y
h′

h

(
η′ − η

h′

h
+ ∇yη · R y

(
τ + α′) − ∇yη · y

h′

h

)
ds dy,

m5
ε(wu0, η) :=

∫
I×S

k(s)h(s)〈zα, y〉
ε

w

(∇yu0∇yη

h2
− λ0

u0η

M2

)
dy ds.

Now we are going to estimate each of the above terms. Let

H1 :=
∥∥∥∥h′

h

∥∥∥∥∞
, H2 := ∥∥τ + α′∥∥∞,

and recall that

C1(S) =
∫
S

∣∣〈∇yu0, R y〉∣∣2
dy and C2(S) =

∫
S

∣∣〈∇yu0, y〉∣∣2
dy.

By Green identities and some calculations, we get∫
S

u0〈∇yη, R y〉dy = −
∫
S

〈∇yu0, R y〉ηdy,

∫
S

u0〈∇yη, y〉dy = −
∫
S

〈∇yu0, y〉ηdy.

Hence:

• ∣∣m1
ε(wu0, η)

∣∣ � H1/2
2 C1(S)

(∫
I

∣∣w ′∣∣2
ds

)1/2( ∫
I×S

|η|2 dy ds

)1/2

+ H1/2
1 C2(S)

(∫
I

∣∣w ′∣∣2
ds

)1/2( ∫
I×S

|η|2 dy ds

)1/2

� C εt (w)1/2 g (η)1/2;
11 ε ε
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• ∣∣m2
ε(wu0, η)

∣∣ �
( ∫

I×S

|w|2|u0|2
(

h′

h

)2

dy ds

)1/2

gε(η)1/2

� H1

(∫
I

|w|2 ds

)1/2

gε(η)1/2

� H1

C1/2
6

ε1/2tε(w)1/2 gε(η)1/2;

• ∣∣m3
ε(wu0, η)

∣∣ �
( ∫

I×S

|w|2∣∣〈∇yu0, R y〉∣∣2(
τ + α′)2

dy ds

)1/2

gε(η)1/2

=
(∫

I

|w|2C1(S)
(
τ + α′)2

ds

)1/2

gε(η)1/2

� C1(S)1/2 H2

(∫
I

|w|2 ds

)1/2

gε(η)1/2

� C1(S)1/2 H2

C1/2
6

ε1/2tε(w)1/2 gε(η)1/2;

• ∣∣m4
ε(wu0, η)

∣∣ �
( ∫

I×S

|w|2∣∣〈∇yu0, y〉∣∣2
(

h′

h

)2

dy ds

)1/2

gε(η)1/2

=
(∫

I

|w|2C2(S)

(
h′

h

)2

ds

)1/2

gε(η)1/2

� C2(S)1/2 H1

(∫
I

|w|2 ds

)1/2

gε(η)1/2

� C2(S)1/2 H1

C1/2
6

ε1/2tε(w)1/2 gε(η)1/2.

Additional calculations show that∫
S

y1〈∇yu0,∇yη〉 = −
∫
S

f1(y)ηdy ds,

∫
S

y2〈∇yu0∇yη〉 = −
∫
S

f2(y)ηdy ds,

where

f1(y) :=
(

∂u0

∂ y1
+ y1

∂2u0

∂ y2
1

+ y1
∂2u0

∂ y2
2

)
,

f2(y) :=
(

∂u0

∂ y2
+ y2

∂2u0

∂ y2
2

+ y2
∂2u0

∂ y2
1

)
.

Thus, there exist C12 and C13 such that

∣∣m5
ε(wu0, η)

∣∣ �
∣∣∣∣
∫

I×S

k(s) cosα(s)y1 w
∇yu0∇yη

εh
dy ds

∣∣∣∣ +
∣∣∣∣
∫

I×S

k(s)h(s) cosα(s)y1λ0 w
u0η

εM2
dy ds

∣∣∣∣
+

∣∣∣∣
∫

k(s) sinα(s)y2 w
∇yu0∇yη

εh
dy ds

∣∣∣∣ +
∣∣∣∣
∫

k(s)h(s) sinα(s)y2λ0 w
u0η

εM2
dy ds

∣∣∣∣

I×S I×S
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� C12

ε

( ∫
R

|w|2 ds

)1/2( ∫
I×S

|η|2 dy ds

)1/2

� C13ε
1/2tε(w)1/2 gε(η)1/2.

By the above estimates it follows that there exists C14 > 0 such that∣∣mε(wu0, η)
∣∣2 � C14εtε(w)gε(η),

and so (12) is proven. By applying Proposition 3.1 of [13], it is found that there exists C10 such that, for ε small enough,∥∥∥∥
(

−�ε,c − λ0

ε2M2
1
)−1

− (
T −1
ε,c ⊕ 0

)∥∥∥∥ � C10ε
3/2.

The proof of the theorem is complete. �
5. Bounded interval and Dirichlet condition

In this section we suppose that I = [−a,b] is a bounded interval and the condition at the boundary ∂Λε is Dirichlet.
Since I is bounded, the spectrum of −�ε,c in Λε is purely discrete and we denote its eigenvalues by lcj(ε).

The main result in this section, that is, Theorem 5.1, is a version of Theorem 1.1 in this context.

Theorem 5.1. The limits

μ j = lim
ε→0

ε

(
lcj(ε) − λ0

ε2M2

)
(13)

exist, where μ j are the eigenvalues of a self-adjoint operator T (see Eq. (5)) acting in L2(R).

To prove this theorem we need some previous results; we will follow [14]. Introduce the family of segments

Iε = (−aε−1/2,bε−1/2), ε > 0,

and the family of unitary operators Jε : L2(I) → L2(Iε) generated by the dilation s �→ sε1/2, that is,

( Jεψ)(s) = ε1/4ψ
(
ε1/2s

)
,

and identify L2(Iε) with the subspace{
u ∈ L2(R): u(s) = 0 a.e. in R\Iε

}
.

Set

T̂ε,c := ε JεTε,c J−1
ε , (14)

which is a self-adjoint operator acting in L2(Iε).

Theorem 5.2. In case I = [−a,b] is a bounded interval, one has∥∥T̂ −1
ε,c ⊕ 0 − T −1

∥∥ → 0, as ε → 0,

where 0 is the null operator on the subspace L2(R\Iε).

We have ε JεWε(s) J−1
ε = εWε(ε

1/2s), and a direct calculation shows that

ε JεWε(s) J−1
ε = ζε

(
ε1/2s, y

)
λ0

[
M−3s2 + ρ

(
ε1/2s

)
s3ε1/2] + εϑ(ε1/2s) + εc,

with ρ ∈ L∞(I). Since ζε(ε
1/2s, y) → 1 uniformly as ε → 0, the proof of Theorem 5.2 is similar to the proof of Theorem 1.3

in [14], and so it will not be repeated here.

Proof of Theorem 5.1. Let l j(Tε,c), l j(T̂ε,c) denote the eigenvalues of Tε,c and T̂ε,c respectively. Let ψc
j,ε denote the

eigenfunction associated with eigenvalue lcj(ε) of −�ε,c . Thus, there exist functions wc
j,ε ∈ L2(I) and U ∈ L such that

ψc
j,ε = wc

j,εu0 + U . Since L is invariant under (−�ε,c − λ0/ε
2M21), it follows that wc

j,εu0 is the eigenfunction associated

with the eigenvalue l j(Tε,c). Observe also that the nonzero eigenvalues of T −1
ε,c ⊕0 are exactly the eigenvalues of T −1

ε,c . Hence,
by Theorem 4.3, we have
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∣∣∣∣
(

lcj(ε) − λ0

ε2M2

)−1

− l−1
j (Tε,c)

∣∣∣∣ �
∥∥∥∥
(

−�ε,c − λ0

ε2M2
1
)−1

− T −1
ε,c ⊕ 0

∥∥∥∥
� C10ε

3/2.

Thus, ∣∣∣∣1

ε

(
lcj(ε) − λ0

ε2M2

)−1

− 1

εl−1
j (Tε,c)

∣∣∣∣ � C10ε
1/2.

Since l j(T̂ε,c) = εl j(Tε,c), by Theorem 5.2, we find

εl j(Tε,c) → μ j, ε → 0,

and (13) follows. �
6. The Neumann case

Here we again consider that I = [−a,b] is a bounded interval, but the Dirichlet condition at the vertical part of the
boundary ∂(I × S), that is, {(−a) × S ∪ b × S}, is replaced by Neumann condition. Our point is that the conclusions of
Theorem 5.1 also hold true in this case. Although in our case the curvature and torsion can be nontrivial, the proof in
this case are similar to the proof of Theorem 5.1 above (and taking into account [13]); for this reason, details will not be
presented.

7. The case I = RRR and Dirichlet condition

In this section we study the case I = R. First we give sufficient conditions for a nonempty discrete spectrum of the
Dirichlet Laplacian, and then discuss the WEO and eigenvalue approximations.

7.1. The discrete spectrum

Now the spectrum of the Laplacian −�ε,c in Λε is not necessarily discrete, but in this section we will see that the
essential spectrum σess(−�ε,c) depends on the behavior of the curvature at infinity; it will then follow that if k(s) → 0 as
|s| → ∞, then the discrete spectrum of −�ε,c is nonempty for ε small enough.

Denote ν(ε) := infσess(−�ε,c) and let lcj(ε) be the eigenvalues of −�ε,c (recall the Dirichlet boundary condition).

Theorem 7.1. If I = R and the curvature satisfies

lim|s|→∞k(s) = 0, (15)

then ν(ε) → ∞ as ε → 0.

Proof. Let N := lim sup|s|→∞ h(s) < M and Î = [−a,a] and define

Ωa,ε = {
(s, y): s ∈ Î

}
and Ω ′

a,ε = {
(s, y): s /∈ Î

}
.

Let −�c
a,ε,D , −�′ c

a,ε,D be the Dirichlet Laplacian in Ωa,ε and Ω ′
a,ε respectively. Similarly, let −�c

a,ε,DN , −�′ c
a,ε,DN be the

above Laplacian operators but with Neumann condition at the vertical part of the boundaries of Ωα,ε and Ω ′
α,ε , respectively.

Note that

−�c
a,ε,DN + (−�′ c

a,ε,DN

)
< −�ε,c < −�c

a,ε,D + (−�′ c
a,ε,D

)
. (16)

Therefore infσess(−�ε,c) � infσess(−�′ c
a,ε,DN ).

Let q′
a,ε,DN be the quadratic form associated with the operator −�′ c

a,ε,DN . Write Kε = sup(s,y)∈R×S βε(s, y); we have

q′
a,ε,DN(ψ) �

(
inf

(s,y)∈R×S

βε(s, y)

ε2h(s)

) ∫
(R\ Î)×S

|∇yψ |2 dy ds

� λ0

(
inf

(s,y)∈R×S

βε(s, y)

ε2h(s)

) ∫
(R\ Î)×S

|ψ |2 dy ds

� λ0

(
inf

(s,y)∈R×S

βε(s, y)

ε2h(s)

)
1

Kε

∫
ˆ

βε(s, y)|ψ |2 dy ds,
(R\I)×S
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for all ψ ∈ dom q′
a,ε,DN . Since k satisfies (15), it follows that the essential spectrum of −�′ c

a,ε,DN is estimated from below

by λ0 times a function that converges to 1
ε2 N

as a → ∞. Since the essential spectrum is a closed subset, it follows that

ν(ε) � λ0
ε2 N2 and consequently ν(ε) → ∞ as ε → 0. �

We conclude that, under condition (15), for ε small enough the discrete spectrum of −�ε,c is nonempty. We again stress
that we have got another property that does not depend on important geometric features of the tube. Also the WEO T (see
also Section 7.2), which weakly describes the asymptotic behaviors of the eigenvalues of −�ε,c in the sense of (13), is not
influenced by such geometric features.

7.2. Weakly effective operator

The goal of this section is to show that Theorems 4.3, 5.1 and 5.2 have a similar counterpart in case I = R. In [13]
these theorems are proven for two-dimensional strips, and here we argue that those proofs can be adapted to our three-
dimensional setting. The proof of Lemma 7.2 will be postponed to the end of this subsection.

Lemma 7.2. There exists C6 > 0 such that, for ε small enough,

tε(w) � C−1
6 ε−1

∫
R

|w|2 ds, ∀w ∈ H1
0(R).

The proof of the next theorem is similar to the proof of Theorem 4.3; it is enough to take into account Lemma 4.2, and
then Lemma 7.2 instead of Lemma 4.1. Recall that L is the subspace generated by functions w(s)u0(y) with w ∈ L2(R)

Theorem 7.3. Let I = R. Then, there exists C10 > 0 such that, for ε small enough,∥∥∥∥
(

−�ε,c − λ0

ε2M2
1
)−1

− (
T −1
ε,c ⊕ 0

)∥∥∥∥ � C10ε
3/2,

where 0 denotes the null operator on the subspace L⊥ .

As in the previous section, consider the self-adjoint operators

T̂ε,c := ε JεTε,c J−1
ε ,

where Jε : L2(R) → L2(R) is the previously discussed unitary operator generated by the dilation s �→ sε1/2.

Theorem 7.4. For ε → 0 one has∥∥T̂ −1
ε,c − T −1

∥∥ → 0,

where T is the operator (5).

As in Section 5, we have that ε JεWε(s) J−1
ε equals

λ0ζε
(
ε1/2s, y

)[
M−3s2 + ρ

(
ε1/2s

)
s3ε1/2] + εϑ

(
ε1/2s

) + εc.

Again, since ζε(ε
1/2s, y) → 1 uniformly as ε → 0, the proof of Theorem 7.4 is similar to the proof of Theorem 1.3 in [14],

and details will be skipped.

Proof of Lemma 7.2. Theorem 7.4 guarantees that

ε−1
∥∥T −1

ε,c

∥∥ → ∥∥T −1
∥∥ (ε → 0),

and so there exists C6 > 0 such that∥∥T −1
ε,c

∥∥ � C6ε.

The proof is complete. �
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Appendix A. Proof of Theorem 3.1

It will be shown that, for ε small enough, there exists C5 > 0 such that∥∥Ĝ−1
ε − G−1

ε

∥∥ � C5ε.

Remember that c > ‖v‖∞ + (1/M2)‖k(s)2/4‖∞ , thus, there exists a number d > 0 such that c = ‖v‖∞ + (1/M2)×
‖k(s)2/4‖∞ + d.

Since ζε → 1 uniformly as ε → 0, there exist ε1 > 0 and numbers σ1, σ2 > 0 such that σ1 � βε � σ2, for all ε < ε1. Thus,

ĝε(ψ) � σ1d‖ψ‖2 and gε(ψ) � d‖ψ‖2,

for all ε < ε1. Consequently,∥∥Ĝ−1
ε

∥∥ � 1

σ1d
and

∥∥G−1
ε

∥∥ � 1

d
,

for all ε < ε1.
Since k,h ∈ L∞(I), y ∈ S and S is a bounded region, there exist ε0 > 0 (ε0 < ε1) and C1, C2 > 0 such that∣∣∣∣

(
1

ζε
− 1

)∣∣∣∣ =
∣∣∣∣εk(s)h(s)(y · zα(s))

ζε

∣∣∣∣ � C1ε,

and

c
∣∣(ζε − 1)

∣∣ � C2ε,

for all ε < ε0. Under such conditions we have

∣∣ĝε(ψ) − gε(ψ)
∣∣ �

∫
I×S

∣∣∣∣
(

1

ζε
− 1

)∣∣∣∣
∣∣∣∣ψ ′ − ψ

h′

h
+ (∇yψ · R y)

(
τ + α′) − (∇yψ · y)

h′

h

∣∣∣∣
2

dy ds

+
∫

I×S

c
∣∣(ζε − 1)

∣∣|ψ |2 ds dy

� C1ε

∫
I×S

∣∣∣∣ψ ′ − ψ
h′

h
+ (∇yψ · R y)

(
τ + α′) − (∇yψ · y)

h′

h

∣∣∣∣
2

+ C2ε

∫
I×S

|ψ |2 dy ds

� C3εgε(ψ)

for some C3 > 0. Hence,

(1 − C3ε)gε(ψ) � ĝε(ψ) � (1 + C3ε)gε(ψ),

for all ε < ε0. The first inequality implies that it is possible to find ε′
0 > 0 (ε′

0 < ε0) and a constant C4 > 0 such that

gε(ψ) � C4 ĝε(ψ),

for all ε < ε′
0.

By Schwarz’s inequality for bilinear forms, we have∣∣ĝε(ψ1,ψ2)
∣∣ �

[
ĝε(ψ1)

]1/2[
ĝε(ψ2)

]1/2
,∣∣gε(ψ1,ψ2)

∣∣ �
[

gε(ψ1)
]1/2[

gε(ψ2)
]1/2

,

for all ψ1,ψ2 ∈ H1
0(R × S). Thus, by using the above estimates, for each pair ψ1,ψ2 ∈ H1

0(R × S) we have∣∣〈Ĝ1/2
ε ψ1, Ĝ1/2

ε ψ2
〉 − 〈

G1/2
ε ψ1, G1/2

ε ψ2
〉∣∣ = ∣∣ĝε(ψ1,ψ2) − gε(ψ1,ψ2)

∣∣
� C3ε

[
gε(ψ1)

]1/2[
gε(ψ2)

]1/2

� C3

√
C4ε

[
gε(ψ1)

]1/2[
ĝε(ψ2)

]1/2
.

By picking ψ1 = G−1
ε f , ψ2 = Ĝ−1

ε g , where f , g ∈ L2(R × S) are arbitrary, we obtain∣∣〈Ĝ−1
ε f , g

〉 − 〈
G−1

ε f , g
〉∣∣ � C3

√
C4ε

[〈
Ĝ−1

ε g, g
〉〈

G−1
ε g, g

〉]1/2

� C3
√

C4√ ε‖ f ‖‖g‖,

d σ1
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for all ε < ε′
0. Therefore,∥∥Ĝ−1

ε − G−1
ε

∥∥ � C5ε,

for all ε < ε′
0, with C5 = C3

√
C4/(d

√
σ1 ). This completes the proof of the theorem.
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