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single point of global maximum. We find the asymptotic behaviors of the eigenvalues and
weakly effective operators as the diameters of the tubes tend to zero. It is shown that such

Is(g)éziﬁns' behaviors are not influenced by some geometric features of the tube, such as curvature,
Thin tubes torsion and twisting, and so a huge amount of different deformed tubes are asymptotically
Laplacian described by the same weakly effective operator.
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1. Introduction

The Laplacian in tubular domains has been studied in various situations [4,8,10,18]. A common tubular region £2 is as
follows: let I CR be an interval of R, r: I — R3 a curve in R3, parametrized by its arc length s, and k(s) and t(s) denote
its curvature and torsion at the point s € I, respectively. Let S be an open, bounded, simply connected and nonempty
subset of R2. Move the region S along r(s) and at each point s allow the region to rotate by an angle a(s) (see details
in Section 2). A problem of interest is the description of the spectral properties of the Laplacian in such tubes and weakly
effective operators (see the definition just after Theorem 1.1) when the region 2 is “squeezed” to the curve r(s), that is,
one considers the sequence of tubes §2. generated by the cross section €S and analyze the limit ¢ — 0.

Let —A, be the Dirichlet Laplacian in §2,. For bounded tubes, i.e., when I is a bounded interval of R, the spectrum
of —A, is purely discrete because in this case its resolvent is compact. In [4] it was analyzed the convergence of the
eigenvalues {A?: i € N} as ¢ — 0 and shown that

Ao
M= K

where 1 is the first, i.e., the lowest, eigenvalue of the Laplacian in the Sobolev space H(])(S), and u; are the eigenvalues of
the one-dimensional operator

1 I k(s)z
w(s) = —w’(s) + [C(S)(t(s) +a'(s) — T]W(S)’ (1

acting in L%(I). Here C(S) is a nonnegative number depending only on the transverse region S [4]. Note that this effective
operator explicitly depends on the geometric shape of the reference curve r(s) (and so of the tube).
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An interesting problem is to know if there exists a similar result about convergence of eigenvalues for unbounded tubes.
For such tubes, in [18] it is shown that if (t + a’)(s) =0 and k(s) # 0, then the discrete spectrum is nonempty, whereas
if (t +a’)(s) # 0 and k(s) = 0, then the discrete spectrum is empty. In [8], by using I"-convergence in case of unbounded
tubes, a strong resolvent convergence was proven and the same action (1) for the respective effective operator (now acting
in L2(R)) was found as &€ — 0.

The Dirichlet Laplacian in strips of R? has been studied in many works [2,14,13,19]. For the case of the constraints of
planar motion to curves there are results about the limit operator in [9,1], and the effective potential is written in terms
of the curvature. The main novelty, when we pass from planar domain to tubes in R3, as considered in [4,8,18,15], is the
additional presence of torsion and twisting (i.e., a nonzero 7(s) +«’(s)) in the effective potential, since the case of untwisted
tubes has also been previously studied (see, for instance, [10,6,7,11,12,17]).

In [14,13] the authors consider a family of deformed strips

{s.») eR’seJ, 0<y < eh(s)},

where | =[—a,b], 0 <a,b < oo, and h(s) > 0 is a continuous function satisfying:

(i) h(s) is a C! function in ]\ {0} and ||h’/h|s < 00;
(ii) near the origin h behaves as

h(s)=M —s*+0(s*), M >0, )

and s =0 is a single point of global maximum for h;
(iii) in case I =R it is assumed that limsupg_, , h(s) < M.

In what follows we assume that h satisfies the above conditions.
It was shown [14,13] that, for ¢ small enough, the discrete spectrum of the Laplacian is always nonempty and the
eigenvalues A;(¢) have the following behavior

72
i=lime(Aj(e) — ——=
Hi= e\t e2M2? )’
where ; are the eigenvalues of the operator in L2(R) (it acts on a subspace of L?(R), independently if the interval I is
bounded or not) given by

" 772 2
(Tw)(s) = —w (S)+2WS w(s),

so that we say that T is a weakly effective operator (WEO) in such situation.

In this work we show that these results hold in a more general setting. We consider a sequence of tubes 2, in the
space R3, as presented at the beginning of this Introduction, but we deform them by multiplying their cross sections by
the above function h(s). Here the tubes may be bounded or not. Then we analyze the asymptotic behavior of eigenvalues
and the weakly effective operators in the limit & — 0. The situation here differs from [14,13], since besides the different
dimensions (we consider regions in 3-dimensional space), the reference curves defining our tubes are allowed to have
nontrivial curvatures and torsion. These tubes, which we shall call deformed tubes, will generically be denoted by A, (see
details in Section 2).

Our main goal is to study how curvature and torsion of the reference curve, together with the deforming function h,
influence the WEO and eigenvalues as ¢ — 0. To this end, we introduce some notation right now. Recall that g is the
lowest eigenvalue of the negative Laplacian with Dirichlet conditions in the region S, and let ug be the corresponding
(positive) normalized eigenfunction, that is,

—Aug = Aolg, Ug € Hy(S), /UO(Y)sz/=1. 3)
S

Furthermore, denote by £ the subspace of L?(I x S) generated by functions w(s)ug(y) with w € L>(I).

We study three distinct cases. First, the tubes are bounded since the interval I is of the form I =[—a,b] with 0 <
a,b < oo, and we consider the Dirichlet condition at the boundary 9 A. In the second case, the tubes are bounded but the
Dirichlet condition at the vertical part of the d A, that is, {(—a) x SUb x S}, is replaced by Neumann. In the third case we
consider I =R with Dirichlet condition at 9 A.

If the tubes are not deformed, according to the results of [4,8], the effective operator (1) presents an additional potential

CS)(t +a')(s) —k*(s)/4

derived from geometric features of the tube. Hence, here there is a kind of competition between geometric properties of
the tube and the behavior at its single maximum of the deformation function h. Roughly speaking, it is expected that the
behavior of h at the single maximum will control the limit € — 0, since the geometric effects give a contribution of order
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zero, whereas the single maximum of the deformation function h gives a contribution of order 1/¢. However, this requires
a proof which turns out to be far from trivial, and so for the three cases mentioned in the previous paragraph, we prove
the following result:

Theorem 1.1. Let I denote either R or a bounded interval [—a, b] as above; in case I = R assume that limys—, o k(s) = 0. If (&)
denote the eigenvalues of the Dirichlet — A¢ in the deformed tube Ag, then, the limits

. Ao
i=lime(li(e) — —— 4
Hi= 10 (f( ) szﬂdz) “)
exist, where wj = (2j + 1)(2h0/M?>)1/2 are the eigenvalues of the self-adjoint operator T, acting in L?(R), given by
A0
— 2
(Tu)(s) =—u"(s) + st u(s). (5)

Due to the conclusions of Theorem 1.1, T is a WEO for —A, as € — 0. Note that T has purely discrete spectrum since
the potential

A0 o
V(s)=2ms — 00, |s|— o0;

in this case it is the harmonic oscillator potential (but see (7) below). Therefore, for deformed tubes as above, the weakly
effective operators T do not depend on some geometric features of the tube, although the curvature of the reference curve
must vanish at infinity. The additional potential V (s) is related to the behavior of h(s) near it maximum (at the origin).
Hence, the eigenvalues of the Laplacian in quite different deformed tubes are described by the same WEO as ¢ — 0!

In Section 2 we present a detailed construction of the deformed tubes A.. Our study and technique are focused on
analyzing the sequence of quadratic forms

A
Fe() = /(WW - 82#%2) dx, dom Fs = Hp(Ae). (6)
Ag

In Section 3 it will become clear why we subtract terms of the form ig/(s2M?)|v|?> from the quadratic forms; we think
this is in fact a natural choice. In Section 3 we also perform a change of variables so that the integration region and the
corresponding domains in (6) remain fixed. In Section 4, we show that our analysis can be restricted to a specific subspace;
we will see that this subspace can be identified with the Sobolev space ’Hcl,(l), and we call this fact a reduction of dimension.
Finally, in Sections 5, 6 and 7, we discuss details of the three cases previously mentioned.

We remark that although we rely on [14,13], the generalization to our setting is not immediate and different techniques
are added to those of the original works. Furthermore, as an alternative to (2), all results can be easily adapted to cover
more general deformation functions h(s), as considered in [14,13], so that near the unique global maximum at the origin
they behave as

M —cys™ + 0(s™t), ifs>0,
M —c_|s|" 4+ 0(|s|™1), ifs<0

for some positive numbers M, m, c. For the sake of simplicity, in Eq. (2) we have particularized to m=2 and c; =c_ =1.

An interesting problem would be if the maximum of h would be reached at an interval of values of the parameter s
instead of a single point (see [3] for results in this direction in case of bounded domains, as well as [5,16]); we are currently
working on a related problem.

mg:{ (7)

2. Geometry of the tubes

Let I =[—a,b], with either 0 <a,b < 0o or a=h = oo, be an interval of R, r: I € R — R3 a simple C? curve in R3
parametrized by its arc length parameter s and, as in the previous section, k(s) is its curvature. The vectors

1
T(s) =1'(s), N(s) = @T’(s), B(s) = T(s) x N(s),

denote, respectively, the tangent, normal and binormal vectors of the curve. We assume that Frenet equations are satisfied,
that is,

T/ 0 k O T
B’ 0 -7t 0 B

where 7(s) is the torsion of the curve r(s).
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Let S be an open, bounded, simply connected and nonempty subset of R2. The set
2 ={xeR’ x=r(s) + y1N(s) + y2B(s). sel, y=(y1.y2) € S}

is obtained by translating the region S along the curve r. At each point r(s) we allow a rotation of the region S by an angle
o (s) with respect to «(0) =0, such that the new region is given by

Q%={xeR’: x=r(s) + y1Na(5) + y2Ba(s), €1, (y1.¥2) € S},

where

Ny (s) :=cosa(s)N(s) + sina(s)B(s),
By (s) := —sina(s)N(s) + cosa(s)B(s).

Next, for each 0 < € < 1, we “squeeze” the cross sections of the above region, that is, we consider
2% ={xeR* x=1(s) + ey1Na(s) + £y2Ba(s), s€l, (y1.y2) € S}.

Note that £2¢ approaches the curve r(s) as € — 0.
Finally, we consider the function h(s) defined in the Introduction, such that each region £2¢ is properly deformed, and
the result is

AY ={xe R3: x=1(s) + €h(s)y1Ng (s) + y2h(s)By(5), s€l, (y1,¥2) € s}.

From now on we will omit the symbol « in most notations and write dx =dsdy1 dy; and dy =dydy,.
In this work we study the behavior of a free quantum particle that moves in A, and initially with Dirichlet boundary
condition at the boundary 9 A. Thus, we initially consider the family of quadratic forms

be() = [ VU Pdx. domb, =7(a0) (8)
Ag
which is associated with the Dirichlet Laplacian operator —A, in A.. The symbol V = (35, Vy), Vy = (dy,, dy,), denotes the
gradient in the coordinates (s, y1, y2) in R3.

3. Quadratic forms

As usual in this kind of problems, in this section we perform a change of variables so that the integration region in (8),
and consequently the domains, become independent of ¢ > 0. Then, for the singular limit & — 0, customary “regularizations”
will be employed.

Consider the mapping

fe: IxS — Ag
(s.¥1.¥2) > 1(5) + &h(s)(y1Nu(s) + y2Bq (5)),

and suppose the boundedness ||k||so, | T lloo, |&']loco < 00. These conditions are to guarantee that f. will be a diffeomorphism.
With this change of variables we work with a fixed region for all € > 0; more precisely, the domain of the quadratic form (8)
turns out to be H})(I x S). On the other hand, the price to be paid is a nontrivial Riemannian metric G = G¥ which is
induced by fe, i.e.,

G=(Gjj), Gijj={(ei,ej)=Gji, 1<i,j<3,
where

_0fe _0fe _ 0fe
ej=——, e=—\, e3=_——.
Y1 ay2

as
Some calculations show that in the Frenet frame

€1
()
€3

Be —eh(T +a')(zg,y) +eh'(za. y) €h(T + ') (za, y) + €N (25, y)
= < 0 chcosa ehsina ),
0 —cehsina ehcosa

where

B (s, ¥) =1 —€eh(s)k(s){zy, ), Zy = (cosa, —sina), Z(Jx‘ 1= (sino, cos o).
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The inverse matrix of J is given by

7+ Fla+ahya =iyl gl-@+a)y -yl

-1 cosa —sina
] = 0 —sina
eh ch
sina coso
0 eh eh

Note that JJf =G and det J = |detG|!/? = £2h?(s)Be(s, y). Since k and h are bounded functions, for & small enough
Be does not vanish in I x S. Thus, B, > 0 and f¢ is a local diffeomorphism. By requiring that f is injective (that is, the
tube is not self-intersecting), a global diffeomorphism is obtained.

Introducing the notation

I3 = / 105, )[262h2(5)Be 5. y) dsdy.

IxS

we obtain a sequence of quadratic forms

be() == 7'V |

More precisely, the above change of coordinates was obtained by a unitary transformation

¢ domb, =H{(I xS, G).

Ug:1%(Ag) > L2(I x S, G)
> o fe.

However, we still denote Uy by .

Recall that A is the lowest eigenvalue of the negative Laplacian with Dirichlet boundary conditions in the cross section
region S, and ug > 0 (see Eq. (3)) the corresponding eigenfunction of this restricted problem. This eigenfunction ug is
directly related to transverse oscillations in A,. Due to this fact, in [4,8] the authors have remove the diverging energy iq/&2
from their quadratic forms. In our case, as the boundary of the tubes was multiplied by h(s), we subtract the terms of the
form 1o/(eM)?, i.e., since 0 < h(s) <M, for all s € I, we eliminate the possible “least transverse energy.”

Therefore, we turn to the study of the sequence of quadratic forms

g = (|7 ]e = o I3 +clvl2),

2M2
where c is a positive constant to be chosen later on. After the norms are written out, we obtain

h(s)|?
h(s)

g = /(ms S R () =Sy

|Vyy|? AQ
e2h(s)2  e2M2

Y12 +clyl )h(s)zﬂg(s,y)dsdy.

Note that dom g, = H}(I x S) is a subspace of L?(I x S,h(s)?B:(s, y)). We observe that the factor |V,y|?/(gh(s))? is
directly related to transverse oscillations of the particle. This term diverges as & — 0, but we control this fact by subtracting
*o/(eM)2||? from the quadratic form (a renormalization).

It will be convenient to work in the space L>(I x S, B¢ (s, ¥)); so we consider the isometry

L2(I x S, Be) — L2(I x S, h(s)*Be)
vis vhl

This change of variables and the division by the global factor £2 (a common singular factor due to the “change of dimension”
as € — 0) leads to

n 1
£ (V)= / (ﬂa(s,w Y
IxS

Be (s, ¥) 2 Be(s.y)
£2h(s)? Vyvl g2M?2

r vh’( )
h(s)

+ Vyv-Ry(t +a')(s) — Vyv-y

+

[VI% + cBe s, y)|v|2) dsdy,

with dom g, = H})(I x S), again as a subspace of L?>(I x S, B¢(s, y)). However, this latter space can be identified with
L2(I x S), for all & > 0, since B¢ (s, y) converges uniformly to 1 as & — 0. Hence we introduce the form
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. H(s) , s |
&) ::/<” Vi TV REHa)@ -y
IxS
Be (s, Y) 2 Be(8.Y) o 2
Ezh(s)z |Vyv| 82M2 |V| +C|V| )de%

with dom g, =H} (I x S).
Let G, and G, be the self-adjoint operators associated with the quadratic forms g, and g., respectively.

Theorem 3.1. For € small enough, there exists C > 0 such that
|G -6 <ce.
This theorem follows basically from the fact that B¢ (s, y) — 1 uniformly as € — 0. Its proof is presented in Appendix A.

Due to the above changes of variables and Theorem 3.1, we may consider the sequence of quadratic forms g in what
follows.

4. Reduction of dimension
Recall that ug(y) is the positive and normalized eigenfunction corresponding to the first eigenvalue Ag of the Laplacian
in H}(S). After the orthogonal decomposition L?(I x S) = £ & £+, for y € L>(I x S), we can write

V(s y) =w(S)uo(y) +n(s, ¥),
with w € L2(I) and n € £*. We observe that n € £+ implies

/uo(y)n(s, y)dy =0, ae.[s].
S
Note that wug € H(l)(l xS)ifwe Hé(l). For v € H(l)(]l x S), write ¥ = wug+1n with w € H(l)(l) and n € 7—[(1)(]1 xS)NLL.

First we study the quadratic form g restricted to the subspace H})(I x S)YN L. For w e H(lj(l), some calculations show
that

) A A
ga(Wuo)Z/[|W 40w +cg(s,y>(82h—§’(5) - 82I{’42>|w|2 +c|w|2}ds,
1
where
B 2 O NG
9(5) = C1(5)(x(5) +&'(5))” + (Ca(S) — 1)(h 5 ) —26)(TO +a' ) 3

and

Ze(s,y) =1 — ek($)h(s)(za(5), F(S)).
The constants C1(S), C2(S) and C3(S) that appear in the definition of ©# depend only on the region S and are explicitly
given by

cl<5)=/!<vyuo,Ry>!2dy, cz(S)zf!Wyuo,y)\zdy,
S S

and

€2(5) = [ (Vyut0. Ry)(Vy0. ) dy.
S
The vector F(S) = (F1(S), F2(S)) in the definition of ¢, also depends only on the region S, and its components are given by

Fl(S)Z/JMIUoIZdy and F2(5)=/J’2|u0|2d3’-
S S

Under such restrictions, the quadratic form b in H(l)(l) can be written in terms of the form t; =t¢ . given by

te(w) :=gs(wuo)=f(|w/|2+ We(s)|w|?)ds, 9)
1
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A A
We(s) :=ﬁ(s)+c+§€(s,y)<Ws(s)—ﬁ>. (10)

We choose the constant ¢ such that ¢ > [|[V]le + (1/M2)[[k(5)% /4| 0.
Since k(s) and h(s) are bounded functions, there exist £; > 0 and § > 0 such that, for all s €I,

1 —ek(s)h(s)(zo(s), F(S)) > 8 and 1 —ek(s)h(s)(za(5), y) > 8,

for all € < 1. In what follows, we tacitly assume that € < &1.
The self-adjoint operator associated with t, in L2(I) is

(Te.cW)(s) := —W"(s) + We(s)w(s), domTec=H>(I)NHI).

From now on we denote by —A, . the operator —A; + c1 and write T, = T,  — c1. Next we discuss how the resolvent
operator (—Ag ¢ — Ao/€2M?1)~! can be approximated by T} @ 0, where 0 is the null operator on the subspace £*. Such
result gives a quantitative indication of how —A, is approximated by T,.

Lemma 4.1. Suppose that I is a bounded interval. Then, there exists Cg > 0 such that

te(w)>Cg]s_]/|w|2ds, Yw e H(I), 0 <& < é&r.
]

By noting that
2
& WAS))@(S 1 _L !
52 s2 "\ h(s)2 M?

the proof of Lemma 4.1 is similar to the proof of Lemma 2.1 in [14], and it will not be reproduced here.
By following [4], for each & € R?, we consider the following perturbed problem

—div[(1—E-»)Vyu]l =11 = & - »)u, ueHN(S).

By taking & = eh(s)k(s)zy, for & small enough, the perturbed operator is positive and with compact resolvent. Denote by
A(&) > 0 its first eigenvalue, i.e.,

. Js(1 = (& - y)IVyul*dy
A = f
® {ue?—t(l)l(l;): uz0) Js(IT—(&-y)lul2dy

Thus, for v € H(])(]I x S),

1
8—2/586, WV = rolvP)dy > Vg(S)/ﬂg(s, WvPdy ae.s) (11)
S S

where
M(eh($)k(s)zy (s)) — Ao

Ve (s):

Using the fact that h(s) and k(s) are bounded functions, it is possible to prove that y,(s) converges uniformly as € — 0
to a bounded function (see Proposition 4.1 in [4]). This will be used in the proof of Lemma 4.2.

Lemma 4.2. Let I denote either R or a bounded interval. Then, for n € H(l)(l x S) N L+, there exists C; € R such that, for & small
enough,

C7
e2M?

ge(n) > 2.

Proof. Let A be the second eigenvalue of the Laplacian in H}(S), and pick n € HA(I x S) N L.
Since h(s) < M, for all s € I, we have

Vynl® nl? Vyni> . ni?
S S
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y (11), it follows that

v 2 2 e
/ms y)(' LI '2’7,142>d > V“/ﬁa(s Vi dy.

Since Y. (s) converges uniformly as € — 0, there exists Cg € R such that, for ¢ small enough,

(s)
)/;,,—22(?8’ Vsel.
Thus,
ﬂg(s,y)lnlzdy>Cs/ﬁe(s, in*dy,
S
and so
|Vy77|2 |77|2 2
/,35(5 y)( hs? MM dde>Cs/ﬂg(s,y)lnl dyds.
IxS

Adding and subtracting the term 32/\# Sixs Be(s, y)|nl>dyds on the left hand side of the above inequality, we obtain

v 2 2
/ﬂe(s,y)<| vl ML )dyds Cs/ﬂe(s »inl dy+u/ﬂs(s yn2dyds.
IxS

2h(s)2 *o 222
IxS IxS

Now, for ¢ small enough, there exists Cg such that

[Vyn|? In|?
gs(ﬂ)?/ﬂs(&)’)( v — A0 anz dyds—i-c/ In?dyds

£2h(s)?
IxS
(A1 —20)
>Cs8 [ Inl? dyderi Be(s. y)n*dyds+c [ |nl*dyds
IxS IxS IxS
> G (s, Y Inl?dyds
IxS
Co
2@5/ I dy ds.
IxS

Finally, it is enough to take C7 = C9é to complete the proof of the lemma. O

Now we are ready to state and prove the main result of this section; it will rest on results presented in Section 3 of [13],
combined with the previous lemmas.

Theorem 4.3. Let I denote either R or a bounded interval. Then there exists C19 > 0 such that, for € small enough,

-1
A0 -1 3/2
H <‘A“ B m‘) ~(Tec®0) H < Cos™%

where 0 denotes the null operator on the subspace 1.

Proof. For y € H}(I x S) write
Y (s, y) =w(s)uo(y) +n(s, ).
with w € H(l)(l) and n € H})(H x §)N £+, Thus, the quadratic form g () can be rewritten as

e (¥) =te (W) + g () + 2mg (Wuip, 1),

where to(w) = g.(wup) (see (9)) and
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h h’
mg (Wi, 1) = / dyd5[<w’uo - Wi +wVyug-Ry(t +a') — wVyug - yﬁ>

IxS
h g
/ /7
><<r] —ng—i-Vyn-Ry(r—i-a)—Vynyﬁ)}
VyupVyn uon
/dydsk(S)h(S)(za,y>W< o2 05M2>'

IxS

We are going to show that t;(w), g:(n) and m.(wug, 1) satisfy the conditions (3.2), (3.3), (3.4) and (3.5) in Section 3
of [13], and so the theorem will follow. Conditions (3.2), (3.3) and (3.4) are obtained by applying Lemmas 4.1 and 4.2 above.

We need only to verify condition (3.5), i.e,, that there exists a function g(¢) such that for each € H(l](l x S)

2
Ime(wuo, m|” < q(&)?ts(W)ge (). q(e) — 0 (¢ — 0).
We write
me (Wo, 1) = m} (Wig, 1) —m2 (W, 1) +m3 (Wuo, 1) —mg(Wuo, 1) —m2 (W, ),

where

/ /

h h
m}(wuo, 1) := / w/u()(n/ —n—+Vyn-Ry(t+a) = Vyn- yﬁ> dsdy,

h
IxS
, e, W / W
ms(wug, 1) = wii-{ 11 —nF—kVyn-Ry(r—i-ot)—Vyn-yg dsdy,
IxS

n h
m3 (wuo, 1) ::/wauO.Ry(t +o/)<n/—n—+vy;7.Ry(r +o/)—Vyn.y_)dyds,

h h
IxS
. We, W / W
mg(wug, 1) := | wVyug- v\ =y +Vyn-Ry(t+a') = Vyn - Vi dsdy,
IxS
k(s)h(s){zy, VyuoV u
m2(wug, 1) 1= / 8< - y>w( J ;2 2l —AOML;?)dyds.
IxS

Now we are going to estimate each of the above terms. Let
h/

H]iZ h

, Hy:= |t +d|

o0

o0’

and recall that

C1(S)=/|<VyuO,Ry>|2dy and Cz(S)sz(Vyuo,y)|2dy.
S S

By Green identities and some calculations, we get

fuoWyn,Ry)dy: —/(Vyuo,Rymdy,

S S
/uo<vyn,y>dy=—/Muo,ymdy.
S S
Hence:
1/2 1/2
. Imi(wuo, n)| < H;/2C1(S)</|w’|2ds> ( / |n|2dyds>
1 IxS
1/2 1/2
+H}/2c2(5)</|w’}2ds> <f|n|2dyds)
1 IxS

< Crigte(w) g (/2

(12)
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W\ 2 1/2
. |m2(wuo, )| < ( / |W|2|u0|2<ﬁ> dyds) ge(m'/?
IxS

172
< H1</ |w|2ds> ge ()2
1

Hiq
172
Ce

N

e Pte(w) g, (/3

1/2
. [m3 (wuo, )| < ( f |w|2|<Vyuo,Ry)\z(fw’)zdyds) ge(m'/?

IxS

1/2
= </|w|2c1<5)(r+a’)2ds> ge(m'/?
I

N

N

6

G <S)”2C e Pte(w) g (/3

1/2
cl(S)”ZHz</|w|2ds> ge(m'/?
1

n 2 1/2
. Img(wuo, n)| < ( / |W|2|(Vyu0a}’>|2<ﬁ> dyds) ge(m'/?
IxS

A2 N\ 12
_ </|W|2C2(S)(F> ds) ()
I

N

N

Additional calculations show that

fy1<Vyuo, Vyn) = /f1 (y)ndyds,

3
/YZ(VyuOVyn /fz(J/)ﬂdde
3

where

dug 9%ug 9%ug
fl(J’)1=<—+y = tVi——= |

ay Y1 Y35
2 2
0 0“uUg 0“uUg
fa(y) =<—+ 22— + 2—)
8 2y3 oyt

Thus, there exist Ci3 and Cq3 such that

VyuogV
m3(wo, )| < ‘ f k(s) cosa(s)ylw%ﬂ’ dyds

IxS

Hiq
C2 (S>”2C e2te(w)2g. ()12

k(s) smoz(s)yzw%yn dyds| +

172
cz<5)1/2H1</|w|2ds> ge ()12

Uon
+‘/k(s)h(s)cosoz(s)ymowmdyds‘

‘/k(s)h(s)sma(s)yzkgw dyd‘

463
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172
C
<§</|w|2ds) (/|n|2dyds)
R IxS

< Cr3e 2t (w) 2 g ()2

1/2

By the above estimates it follows that there exists C14 > 0 such that

2
|me (wuo, n)|” < Cragte(w)ge (1),

and so (12) is proven. By applying Proposition 3.1 of [13], it is found that there exists Cig such that, for £ small enough,

-1
Ao 1 3/2
H <—Ag’c _ W1) - (TE,C @ O) ” < C]OS .

The proof of the theorem is complete. O

5. Bounded interval and Dirichlet condition

In this section we suppose that I =[—a, b] is a bounded interval and the condition at the boundary 9 A, is Dirichlet.

Since I is bounded, the spectrum of —A,  in A, is purely discrete and we denote its eigenvalues by l?(s).
The main result in this section, that is, Theorem 5.1, is a version of Theorem 1.1 in this context.

Theorem 5.1. The limits

A0
i=limell(e) — ——
Hi=10 (1( ) 821\/12)
exist, where i j are the eigenvalues of a self-adjoint operator T (see Eq. (5)) acting in L2(R).

To prove this theorem we need some previous results; we will follow [14]. Introduce the family of segments

Ie = (—ae™ 2 be™1/?), &>0,

and the family of unitary operators J, : L*(I) — L?>(I¢) generated by the dilation s — sg1/2, that is,
Ue¥)(s) =&y (e'2s),

and identify L%(I,) with the subspace
{uel>®): u(s) =0ae.inR\I}.

Set
Teci=eJeTecl; s

which is a self-adjoint operator acting in L2(Ig).

Theorem 5.2. In case | = [—a, b] is a bounded interval, one has
||T;§ ®0-T7'|—>0, ase—0,
where 0 is the null operator on the subspace L2(R\I).
We have & J W, (s) 7! = eW,(¢!/%s), and a direct calculation shows that

eJeWe () J5 ' = e (625, y)ro[M s + p(e/25)s%e1/?] + ev (e/%5) + ec,

(13)

(14)

with p € L°(I). Since £¢(¢'/2s, y) — 1 uniformly as & — 0, the proof of Theorem 5.2 is similar to the proof of Theorem 1.3

in [14], and so it will not be repeated here.

Proof of Theorem 5.1. Let [;(T, ), lj(f"g,c) denote the eigenvalues of T.. and f'g,c respectively. Let Wf,g denote the
eigenfunction associated with eigenvalue lj(s) of —Ag . Thus, there exist functions wjg € L2(I) and U € £ such that
¢ —=we cUo+ U. Since L is invariant under (—Ag ¢ — ro/€2M?21), it follows that wj ¢Uo is the eigenfunction associated

Jj.€ Js

with the eigenvalue I;(T, (). Observe also that the nonzero eigenvalues of T;g @0 are exactly the eigenvalues of T;g. Hence,

by Theorem 4.3, we have
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C )\'O ! -1 )\'0 - -1
lj(g)—m =1 (Te )| < —As,c—m1 -T,.®0

< Croe2.

Thus,

< Croe'/2,

-1
1 ( Xo 1
—(I5(e) — > —
’e R e el (Te.c)
Since lj(fs,c) =¢&lj(T¢,c), by Theorem 5.2, we find

elj(Te,c) = nj, €—0,

and (13) follows. O
6. The Neumann case

Here we again consider that I =[—a,b] is a bounded interval, but the Dirichlet condition at the vertical part of the
boundary d(I x S), that is, {(—a) x SUDb x S}, is replaced by Neumann condition. Our point is that the conclusions of
Theorem 5.1 also hold true in this case. Although in our case the curvature and torsion can be nontrivial, the proof in
this case are similar to the proof of Theorem 5.1 above (and taking into account [13]); for this reason, details will not be
presented.

7. The case I =R and Dirichlet condition

In this section we study the case I = R. First we give sufficient conditions for a nonempty discrete spectrum of the
Dirichlet Laplacian, and then discuss the WEO and eigenvalue approximations.

7.1. The discrete spectrum

Now the spectrum of the Laplacian —Ag . in A is not necessarily discrete, but in this section we will see that the
essential spectrum oess(—Ag ) depends on the behavior of the curvature at infinity; it will then follow that if k(s) — 0 as
|s| — oo, then the discrete spectrum of —A; ¢ is nonempty for & small enough.

Denote v(¢) := infoess(—Ag ) and let lj(s) be the eigenvalues of —A, . (recall the Dirichlet boundary condition).

Theorem 7.1. If = R and the curvature satisfies
lim k(s) =0, (15)

[s|—>o0

thenv(e) > ocoas e — 0.

Proof. Let N :=limsups_, h(s) <M and = [—a, a] and define

Qae={Gy):sel} and 2),={Gy:s¢l).

Let —Af . p, —Ag, p be the Dirichlet Laplacian in 2, and 2, , respectively. Similarly, let —AZ,E,DN, —A(’f&DN be the

above Laplacian operators but with Neumann condition at the vertical part of the boundaries of £24 . and .Q(;’ ¢» Tespectively.
Note that

—Age.pn + (=A% pn) < —Dec < —Ag s p+ (=A% p)- (16)

Therefore infoess(—Ag,c) > infoess(—AL, py)-
Let qg,E!DN be the quadratic form associated with the operator —A[’f&DN. Write K¢ = sups y)erxs Be (S, ¥); we have

(s.y)eRxS &2h(s)

®\H)xS

: Be(s, y) / )
. f dyd
0<(s.y§reles €2h(s) ) [y |~dyds

R\))xS

>Ao< inf ﬁe(s’”)% / Be(s, )Y I*dyds,

s.y)eRxS &2h(s)

®R\DxS
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for all ¥ € domq,’lyg’DN. Since k satisfies (15), it follows that the essential spectrum of —A', . is estimated from below

a,e,D
by Ao times a function that converges to ﬁ as a — oo. Since the essential spectrum is a closed subset, it follows that

v(e) = ﬁ and consequently v(e) > ocoas € —> 0. O

We conclude that, under condition (15), for € small enough the discrete spectrum of —A; ¢ is nonempty. We again stress
that we have got another property that does not depend on important geometric features of the tube. Also the WEO T (see
also Section 7.2), which weakly describes the asymptotic behaviors of the eigenvalues of —A; ¢ in the sense of (13), is not
influenced by such geometric features.

7.2. Weakly effective operator

The goal of this section is to show that Theorems 4.3, 5.1 and 5.2 have a similar counterpart in case I = R. In [13]
these theorems are proven for two-dimensional strips, and here we argue that those proofs can be adapted to our three-
dimensional setting. The proof of Lemma 7.2 will be postponed to the end of this subsection.

Lemma 7.2. There exists Cg > 0 such that, for € small enough,

tg(w)>C6_18’1/|w|2ds, Yw € H(R).
R

The proof of the next theorem is similar to the proof of Theorem 4.3; it is enough to take into account Lemma 4.2, and
then Lemma 7.2 instead of Lemma 4.1. Recall that £ is the subspace generated by functions w(s)ug(y) with w € L2(R)

Theorem 7.3. Let I = R. Then, there exists C19 > 0 such that, for € small enough,

-1
Ao -1 3/2
H (—Ae,c——gzwl) —(TS,C@O)H«]Oe :

where 0 denotes the null operator on the subspace £1.
As in the previous section, consider the self-adjoint operators
& -1
Tec:=¢€]eTec], s
1/2

where [, :L2(R) — L2(R) is the previously discussed unitary operator generated by the dilation s — sg1/2.

Theorem 7.4. For ¢ — 0 one has
[Tee -1 -0,
where T is the operator (5).
As in Section 5, we have that ¢ JcW, (s)jg1 equals
r0¢e (8125, y) [M73s% + p(e'/25)s3e/2] + &0 (¢1/%5) + ec.

Again, since z;(¢'/?s, y) — 1 uniformly as &€ — 0, the proof of Theorem 7.4 is similar to the proof of Theorem 1.3 in [14],
and details will be skipped.

Proof of Lemma 7.2. Theorem 7.4 guarantees that
e el = T @0,

and so there exists Cg > 0 such that
| Tee |l < Cee.

The proof is complete. O
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Appendix A. Proof of Theorem 3.1

It will be shown that, for ¢ small enough, there exists C5 > 0 such that
[65" — G < Cse.

Remember that ¢ > [|[V]e + (1/M?)|k(5)%/4|s0, thus, there exists a number d > 0 such that ¢ = ||V]le + (1/M?) x
k(s)? /4]0 +d.
Since ¢z — 1 uniformly as € — 0, there exist €1 > 0 and numbers o1, 02 > 0 such that o1 < B¢ < 09, for all € < &1. Thus,

() =od|yl? and g.(y)=dly|

for all € < 1. Consequently,

ol 1
&< g and 6 <

Q.I'—*

for all &€ < &1.
Since k,h € L°(T), y € S and S is a bounded region, there exist &g > 0 (&9 < &1) and Cq, C2 > 0 such that

’(l _1>‘ _|ek©hE) (- 2o (5)
2

&
c|(Ge — )| < Cae,

for all € < &g. Under such conditions we have

< Cre,

and

2
dyds

. 1 , n , n
Igs(W)—ge(lﬂ)K /'(;—QHI& _WE‘F(VyW'RJ/)(T‘i‘a)_(VyW‘J/)E
E;

+ / c|(ze — 1|1y 2dsdy

IxS

1 h 14 h 2 2
<C18/ 14 —wg+(Vy1ﬁ~Ry)(f+0t)—(Vy1/f~Y)g +Cae [ Iy|7dyds
IxS IxS
< C3ege(¥)

for some C3 > 0. Hence,

(1-C38)8:(¥) < & (V) < (1 + C38)g:(¥),

for all £ < £o. The first inequality implies that it is possible to find & > 0 (¢; < &0) and a constant C4 > 0 such that

8s(¥) < Cage(V),

for all & < g
By Schwarz’s inequality for bilinear forms, we have

|8 (1. 92)| < [ésom)]” [e(y)]".
|8 (¥ v2)| < [ge(w)] [ (¥)] %,
for all ¥r1, v € ’Hl(]R x S). Thus, by using the above estimates, for each pair ¥, ¥ € ’Hé (R x S) we have

(G %y, G/ %) — (G2

cl2

V1, G )| = |8 (W1, ¥2) — 8 (W1, ¥2)|
< C3efge(y)]*[ge(v)]?
< C3y/Cag[ge ()] [2e (2]
By picking ¥ = G;'f, ¥ =G, g, where f, g e L%(R x S) are arbitrary, we obtain
(G- f.8)— (G2 .8l < C3v/Cag[(G g, 8)(Gi Mg 8)]

3V
\d\/_

172

elflngl.
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for all & < g(. Therefore,

J6t -Gt < Cse.
for all & < gf, with C5 = C34/C4/(d\/07). This completes the proof of the theorem.
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