290 research outputs found

    Safety of Dams Modifications of Ochoco Dam − Crooked River Project, Oregon

    Get PDF
    Ochoco Dam, a hydraulic fill structure, was completed in 1920 and is located just east of Prineville, Oregon. Foundation units consist of a massive landslide, talus/alluvial fan complex, alluvium, and John Day Formation. Dam embankment right-abutment seepage occurred during first filling. Upstream right-abutment treatment in 1921 reduced this seepage from an estimated 43 cfs to approximately 28 cfs. Further modifications were completed in 1950 reducing seepage to approximately 12 cfs. As part of the U.S. Bureau of Reclamation\u27s dam safety program, geotechnical investigations were started in 1985. Following this program, erratic piezometer readings in 1989 and sinkhole development along the upstream right abutment led to water surface restriction and construction of a right-abutment geomembrane liner in 1990. Further deteriorating conditions prompted draining of the reservoir in 1993. Extensive modifications, including an upstream zoned embankment with graded filters and drainage system exiting through maximum section of the original embankment, were completed in 1995. First-filling criteria were instituted following these modifications. On May 17, 1995, turbid flow was noted in the main drain outflow with drainage increasing from 1,770 gpm to 3,600 gpm, accompanied by a dramatic rise in pore pressure and increased flows from right-abutment weirs. Extensive underwater examinations and a fluorescein tracer dye testing program resulted in discovery of a ten-foot-diameter sinkhole in the upstream embankment. The sinkhole was backfilled and the reservoir was drained for repairs. Forensic investigations indicated complete sinkhole penetration of the newly constructed embankment with extension down to the 1918 hydraulic fill through an unexpected wedge of large rockfill from previous construction. Following these repairs, dam performance has been closely monitored through the 1996 and 1997 irrigation seasons with performance within expected parameters

    CEUs for Certified Crop Advisers—Anytime/Anywhere

    Get PDF
    The Certified Crop Adviser program helps ensure that growers receive sound advice and recommendations. Agriculturists involved in crop production assist in identifying what CCAs should know. Competency areas and performance objectives are developed to address those areas, which form the basis for continuing education programs

    Home Energy-Efficiency Retrofits

    Get PDF

    Disrupted glucose homeostasis and skeletal muscle-specific glucose uptake in an exocyst knockout mouse model

    Get PDF
    Skeletal muscle is responsible for the majority of glucose disposal following meals, and this is achieved by insulin-mediated trafficking of glucose transporter type 4 (GLUT4) to the cell membrane. The eight-protein exocyst trafficking complex facilitates targeted docking of membrane-bound vesicles, a process underlying the regulated delivery of fuel transporters. We previously demonstrated the role of exocyst subunit EXOC5 in insulin-stimulated GLUT4 exocytosis and glucose uptake in cultured rat skeletal myoblasts. However, the in vivo role of EXOC5 in skeletal muscle remains unclear. Using mice with inducible, skeletal muscle-specific knockout of exocyst subunit EXOC5 (Exoc5-SMKO), we examined how muscle-specific disruption of the exocyst would affect glucose homeostasis in vivo. We found that both male and female Exoc5-SMKO mice displayed elevated fasting glucose levels. Additionally, male Exoc5-SMKO mice had impaired glucose tolerance and lower serum insulin levels. Using indirect calorimetry, we observed that male Exoc5-SMKO mice have a reduced respiratory exchange ratio during the light period and lower energy expenditure. Using the hyperinsulinemic-euglycemic clamp method, we further showed that insulin-stimulated skeletal muscle glucose uptake is reduced in Exoc5-SMKO males compared to wild-type controls. Overall, our findings indicate that EXOC5 and the exocyst are necessary for insulin-stimulated glucose uptake in skeletal muscle and regulate glucose homeostasis in vivo

    Sediment-Water Interactions Affecting Dissolved-Mercury Distributions in Camp Far West Reservoir, California

    Get PDF
    Field and laboratory studies were conducted in April and November 2002 to provide the first direct measurements of the benthic flux of dissolved (0.2-micrometer filtered) mercury species (total and methylated forms) between the bottom sediment and water column at three sampling locations within Camp Far West Reservoir, California: one near the Bear River inlet to the reservoir, a second at a mid-reservoir site of comparable depth to the inlet site, and the third at the deepest position in the reservoir near the dam (herein referred to as the inlet, midreservoir and near-dam sites, respectively; Background, Fig. 1). Because of interest in the effects of historic hydraulic mining and ore processing in the Sierra Nevada foothills just upstream of the reservoir, dissolved-mercury species and predominant ligands that often control the mercury speciation (represented by dissolved organic carbon, and sulfides) were the solutes of primary interest. Benthic flux, sometimes referred to as internal recycling, represents the transport of dissolved chemical species between the water column and the underlying sediment. Because of the affinity of mercury to adsorb onto particle surfaces and to form insoluble precipitates (particularly with sulfides), the mass transport of mercury in mining-affected watersheds is typically particle dominated. As these enriched particles accumulate at depositional sites such as reservoirs, benthic processes facilitate the repartitioning, transformation, and transport of mercury in dissolved, biologically reactive forms (dissolved methylmercury being the most bioavailable for trophic transfer). These are the forms of mercury examined in this study. In contrast to typical scientific manuscripts, this report is formatted in a pyramid-like structure to serve the needs of diverse groups who may be interested in reviewing or acquiring information at various levels of technical detail (Appendix 1). The report enables quick transitions between the initial summary information (figuratively at the top of the pyramid) and the later details of methods or results (figuratively towards the base of the pyramid) using hyperlinks to supporting figures and tables, and an electronically linked Table of Contents. During two sampling events, two replicate sediment cores (Coring methods; Fig. 2) from each of three reservoir locations (Fig. 1) were used in incubation experiments to provide flux estimates and benthic biological characterizations. Incubation of these cores provided “snapshots” of solute flux across the sediment-water interface in the reservoir, under benthic, environmental conditions representative of the time and place of collection. Ancillary data, including nutrient and ligand fluxes, were gathered to provide a water-quality framework from which to compare the results for mercury

    Can We Really Prevent Suicide?

    Get PDF
    Every year, suicide is among the top 20 leading causes of death globally for all ages. Unfortunately, suicide is difficult to prevent, in large part because the prevalence of risk factors is high among the general population. In this review, clinical and psychological risk factors are examined and methods for suicide prevention are discussed. Prevention strategies found to be effective in suicide prevention include means restriction, responsible media coverage, and general public education, as well identification methods such as screening, gatekeeper training, and primary care physician education. Although the treatment for preventing suicide is difficult, follow-up that includes pharmacotherapy, psychotherapy, or both may be useful. However, prevention methods cannot be restricted to the individual. Community, social, and policy interventions will also be essentia

    The HST/ACS Coma Cluster Survey. II. Data Description and Source Catalogs

    Full text link
    The Coma cluster was the target of a HST-ACS Treasury program designed for deep imaging in the F475W and F814W passbands. Although our survey was interrupted by the ACS instrument failure in 2007, the partially completed survey still covers ~50% of the core high-density region in Coma. Observations were performed for 25 fields that extend over a wide range of cluster-centric radii (~1.75 Mpc) with a total coverage area of 274 arcmin^2. The majority of the fields are located near the core region of Coma (19/25 pointings) with six additional fields in the south-west region of the cluster. In this paper we present reprocessed images and SExtractor source catalogs for our survey fields, including a detailed description of the methodology used for object detection and photometry, the subtraction of bright galaxies to measure faint underlying objects, and the use of simulations to assess the photometric accuracy and completeness of our catalogs. We also use simulations to perform aperture corrections for the SExtractor Kron magnitudes based only on the measured source flux and half-light radius. We have performed photometry for ~73,000 unique objects; one-half of our detections are brighter than the 10-sigma point-source detection limit at F814W=25.8 mag (AB). The slight majority of objects (60%) are unresolved or only marginally resolved by ACS. We estimate that Coma members are 5-10% of all source detections, which consist of a large population of unresolved objects (primarily GCs but also UCDs) and a wide variety of extended galaxies from a cD galaxy to dwarf LSB galaxies. The red sequence of Coma member galaxies has a constant slope and dispersion across 9 magnitudes (-21<M_F814W<-13). The initial data release for the HST-ACS Coma Treasury program was made available to the public in 2008 August. The images and catalogs described in this study relate to our second data release.Comment: Accepted for publication in ApJS. A high-resolution version is available at http://archdev.stsci.edu/pub/hlsp/coma/release2/PaperII.pd

    Chemical combination effects predict connectivity in biological systems

    Get PDF
    Efforts to construct therapeutically useful models of biological systems require large and diverse sets of data on functional connections between their components. Here we show that cellular responses to combinations of chemicals reveal how their biological targets are connected. Simulations of pathways with pairs of inhibitors at varying doses predict distinct response surface shapes that are reproduced in a yeast experiment, with further support from a larger screen using human tumour cells. The response morphology yields detailed connectivity constraints between nearby targets, and synergy profiles across many combinations show relatedness between targets in the whole network. Constraints from chemical combinations complement genetic studies, because they probe different cellular components and can be applied to disease models that are not amenable to mutagenesis. Chemical probes also offer increased flexibility, as they can be continuously dosed, temporally controlled, and readily combined. After extending this initial study to cover a wider range of combination effects and pathway topologies, chemical combinations may be used to refine network models or to identify novel targets. This response surface methodology may even apply to non-biological systems where responses to targeted perturbations can be measured
    corecore