713 research outputs found

    Experimentally Feasible Security Check for n-qubit Quantum Secret Sharing

    Full text link
    In this article we present a general security strategy for quantum secret sharing (QSS) protocols based on the HBB scheme presented by Hillery, Bu\v{z}ek and Berthiaume [Phys. Rev A \textbf{59}, 1829 (1999)]. We focus on a generalization of the HBB protocol to nn communication parties thus including nn-partite GHZ states. We show that the multipartite version of the HBB scheme is insecure in certain settings and impractical when going to large nn. To provide security for such QSS schemes in general we use the framework presented by some of the authors [M. Huber, F. Minert, A. Gabriel, B. C. Hiesmayr, Phys. Rev. Lett. \textbf{104}, 210501 (2010)] to detect certain genuine nn partite entanglement between the communication parties. In particular, we present a simple inequality which tests the security.Comment: 5 pages, submitted to Phys. Rev.

    Interpretations of Presburger Arithmetic in Itself

    Full text link
    Presburger arithmetic PrA is the true theory of natural numbers with addition. We study interpretations of PrA in itself. We prove that all one-dimensional self-interpretations are definably isomorphic to the identity self-interpretation. In order to prove the results we show that all linear orders that are interpretable in (N,+) are scattered orders with the finite Hausdorff rank and that the ranks are bounded in terms of the dimension of the respective interpretations. From our result about self-interpretations of PrA it follows that PrA isn't one-dimensionally interpretable in any of its finite subtheories. We note that the latter was conjectured by A. Visser.Comment: Published in proceedings of LFCS 201

    Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement

    Full text link
    We present a way for symmetric multiparty-controlled teleportation of an arbitrary two-particle entangled state based on Bell-basis measurements by using two Greenberger-Horne-Zeilinger states, i.e., a sender transmits an arbitrary two-particle entangled state to a distant receiver, an arbitrary one of the n+1n+1 agents via the control of the others in a network. It will be shown that the outcomes in the cases that nn is odd or it is even are different in principle as the receiver has to perform a controlled-not operation on his particles for reconstructing the original arbitrary entangled state in addition to some local unitary operations in the former. Also we discuss the applications of this controlled teleporation for quantum secret sharing of classical and quantum information. As all the instances can be used to carry useful information, its efficiency for qubits approaches the maximal value.Comment: 9 pages, 3 figures; the revised version published in Physical Review A 72, 022338 (2005). The detail for setting up a GHZ-state quantum channel is adde

    Economical (k,m)-threshold controlled quantum teleportation

    Full text link
    We study a (k,m)-threshold controlling scheme for controlled quantum teleportation. A standard polynomial coding over GF(p) with prime p > m-1 needs to distribute a d-dimensional qudit with d >= p to each controller for this purpose. We propose a scheme using m qubits (two-dimensional qudits) for the controllers' portion, following a discussion on the benefit of a quantum control in comparison to a classical control of a quantum teleportation.Comment: 11 pages, 2 figures, v2: minor revision, discussions improved, an equation corrected in procedure (A) of section 4.3, v3: major revision, protocols extended, citations added, v4: minor grammatical revision, v5: minor revision, discussions extende

    Optimum Organization of Cotton Ginning and Warehousing Facilities in the Oklahoma-Texas Plains

    Get PDF
    The Oklahoma Agricultural Experiment Station periodically issues revisions to its publications. The most current edition is made available. For access to an earlier edition, if available for this title, please contact the Oklahoma State University Library Archives by email at [email protected] or by phone at 405-744-6311

    Unconditional security of entanglement-based continuous-variable quantum secret sharing

    Get PDF
    The need for secrecy and security is essential in communication. Secret sharing is a conventional protocol to distribute a secret message to a group of parties, who cannot access it individually but need to cooperate in order to decode it. While several variants of this protocol have been investigated, including realizations using quantum systems, the security of quantum secret sharing schemes still remains unproven almost two decades after their original conception. Here we establish an unconditional security proof for entanglement-based continuous-variable quantum secret sharing schemes, in the limit of asymptotic keys and for an arbitrary number of players. We tackle the problem by resorting to the recently developed one-sided device-independent approach to quantum key distribution. We demonstrate theoretically the feasibility of our scheme, which can be implemented by Gaussian states and homodyne measurements, with no need for ideal single-photon sources or quantum memories. Our results contribute to validating quantum secret sharing as a viable primitive for quantum technologies

    Categorical Code Constructions

    Get PDF
    Abstract We study categories of codes and precodes. The objects in these categories capture the encoding and decoding process of error control codes, source codes, or cryptographic codes. We show that these categories are complete and cocomplete. This gives a wealth of new code constructions

    Circular quantum secret sharing

    Full text link
    A circular quantum secret sharing protocol is proposed, which is useful and efficient when one of the parties of secret sharing is remote to the others who are in adjacent, especially the parties are more than three. We describe the process of this protocol and discuss its security when the quantum information carrying is polarized single photons running circularly. It will be shown that entanglement is not necessary for quantum secret sharing. Moreover, the theoretic efficiency is improved to approach 100% as almost all the instances can be used for generating the private key, and each photon can carry one bit of information without quantum storage. It is straightforwardly to utilize this topological structure to complete quantum secret sharing with multi-level two-particle entanglement in high capacity securely.Comment: 7 pages, 2 figure

    Increasing Engagement in Advance Care Planning Using a Behaviour Change Model: Study Protocol for the STAMP Randomised Controlled Trials

    Get PDF
    Introduction Advance care planning (ACP) is a key component of high-quality end-of-life care but is underused. Interventions based on models of behaviour change may fill an important gap in available programmes to increase ACP engagement. Such interventions are designed for broad outreach and flexibility in delivery. The purpose of the Sharing and Talking about My Preferences study is to examine the efficacy of three behaviour change approaches to increasing ACP engagement through two related randomised controlled trials being conducted in different settings (Veterans Affairs (VA) medical centre and community). Methods and analysis Eligible participants are 55 years or older. Participants in the community are being recruited in person in primary care and specialty outpatient practices and senior living sites, and participants in the VA are recruited by telephone. In the community, randomisation is at the level of the practice or site, with all persons at a given practice/ site receiving either computer-tailored feedback with a behaviour stage-matched brochure (computer-tailored intervention (CTI)) or usual care. At the VA, randomisation is at the level of the participant and is stratified by the number of ACP behaviours completed at baseline. Participants are randomised to one of four groups: CTI, motivational interviewing, motivational enhancement therapy or usual care. The primary outcome is completion of four key ACP behaviours: identification of a surrogate decision maker, communication about goals, completing advance directives and ensuring documents are in the medical record. Analysis will be conducted using mixed effects models, taking into account the clustered randomisation for the community study. Ethics and randomisation The studies have been approved by the appropriate Institutional Review Boards and are being overseen by a Safety Monitoring Committee. The results of these studies will be disseminated to academic audiences and leadership in in the community and VA sites. Trial registration numbers NCT03137459 and NCT03103828

    Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state

    Full text link
    We present a scheme for symmetric multiparty quantum state sharing of an arbitrary mm-qubit state with mm Greenberger-Horne-Zeilinger states following some ideas from the controlled teleportation [Phys. Rev. A \textbf{72}, 02338 (2005)]. The sender Alice performs mm Bell-state measurements on her 2m2m particles and the controllers need only to take some single-photon product measurements on their photons independently, not Bell-state measurements, which makes this scheme more convenient than the latter. Also it does not require the parties to perform a controlled-NOT gate on the photons for reconstructing the unknown mm-qubit state and it is an optimal one as its efficiency for qubits approaches the maximal value.Comment: 6 pages, no figures; It simplifies the process for sharing an arbitrary m-qubit state in Phys. Rev. A 72, 022338 (2005) (quant-ph/0501129
    corecore