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Abstract

We study categories of codes and precodes. The objects in these cat-
egories capture the encoding and decoding process of error control
codes, source codes, or cryptographic codes. We show that these cat-
egories are complete and cocomplete. This gives a wealth of new code
constructions.
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1 Introduction

Cryptographers tend to define a cryptosystem as a family of codes, indexed
by a set of keys. But what is a code, as far as a cryptographer is concerned?
It seems to involve secrecy, and complicated encoding and decoding. So it is
not just a subset of a Hamming space, as in information theory.

Some of today’s most famous cryptosystems, such as AES, DES, RC5, and
RSA, are simple substitution ciphers. In other words, each is a family of pairs
(e, d) of encode and decode permutations of a single large alphabet P , which
may contain as many as 24096 symbols. These permutations are inverses of
one another, that is, d ◦ e is the identity function.

We do not use such a narrow definition of a code. We think that there
are good reasons to adopt the view that e and d are encoding and decoding
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relations, rather than bijections. A code consists of a set P of plaintext
symbols, a set C of codetext symbols, an encoding relation e ⊆ P × C,
and a decode relation d ⊆ C × P such that the composite relation d ◦ e is
subdiagonal. An example is given by homophonic substitution ciphers, which
may have various alternate encodes for a single plaintext symbol.

Simple substitution ciphers often have small unicity distances for reason-
able languages, such as English text written in ASCII characters. For in-
stance, DES, AES, RC5 each have a unicity distance less than about 19 bytes,
assuming a key length of 128 bits or less, and RSA even has unicity distance
zero. It is well known that homophone-rich and null-rich substitution ciphers
have significantly larger unicity distances than simple bijection substitution
ciphers, see Appendix G in [9]. In other words, apart from algorithmic de-
tails which are a low-level feature of the design process of the encode of the
key settings of a cryptosystem, there are high-level, code-theoretic, structural
considerations which have an important effect on the security of a design.

These facts are simple examples of a principle which the general theory
of codes points up – apart from the nature or complexity of the algorithms
employed in encode or decode processes which implement key settings of a
cryptosystem, the code-theoretic structure of such key-settings can signif-
icantly affect security. Thus, the current emphasis on algorithmic consid-
erations in cryptosystem design must be supplemented by due attention to
code-theoretic structure.

The purpose of this paper is to study the construction, the structure, and
in particular various methods for the composition of codes and precodes.
A precode consists of a plaintext alphabet P , a codetext alphabet C, an
encoding relation e ⊆ P × C and a decoding relation d ⊆ C × P , but does
not necessarily satisfy that d ◦ e is subdiagonal. Lossy compression methods,
such as JPEG, are examples of precodes that are not codes.

At first we viewed a precode as merely a convenient step toward precisely
defining a code in accord with centuries of quite inclusive usage of the word.
But it turns out that there are more precodes and codes in use than were
obvious at first blush. And it turns out that some noncode precodes – such as
secret sharing schemes and lossy compression schemes – are useful precisely
because they are not codes.

What forced our attention on precodes as well as codes was the interest
generated by the separate but related category-theoretic properties of both
precodes and codes. The study of codes and precodes was initiated in the
papers [2] and [3], in a purely set-theoretical approach. In contrast, we use
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a categorical approach to study codes and their homomorphisms here. The
new perspective leads to many new constructions and a more systematic
treatment of various aspects of the theory.

Another reason to consider the category of precodes is that we do not only
get a richer set of examples, but we also obtain a useful way to construct
codes from precodes. The reason is that there exists an interesting functor
from the category of precodes to the category of codes, namely the smash
functor introduced in Section 4 below. This functor induces an equivalence
relation on the plaintexts that identifies the elements that are decoded to
the same symbol. For instance, in the JPEG example mentioned above all
images that essentially look alike and thus yield the same compressed result
would be identified under this equivalence relation. The smash functor is
thus a most natural construction that produces codes from precodes.

Notations. If A,B,C are sets, and r ⊆ A× B and s ⊆ B × C are relations,
then s ◦ r denotes the composite relation. The product r⊗ s of two relations
r and s is given by

r ⊗ s = {((r1, s1), (r2, s2)) | (r1, r2) ∈ r, (s1, s2) ∈ s}.

2 Basics

A precode A = (P,C, e, d) consists of a set P of plaintext symbols, a set C
of codetext symbols, an encoding relation e ⊆ P×C, and a decoding relation
d ⊆ C × P . A precode A is said to be a code if and only if the composite
d ◦ e of the encoding and decoding relation is a subdiagonal relation on P .
In other words, a code requires the composite relation

d ◦ e = { (p1, p2) ∈ P × P | ∃c ∈ C (p1, c) ∈ e ∧ (c, p2) ∈ d }

to be a subset of the identity relation {(p, p) | p ∈ P}.
A playful illustration of a precode is given in the next example.

Example 1 Alice and Bob play a simple matching tile domino game. The
dealer hands Alice the tiles e = { , , , } and Bob the tiles
d = { , , }. Alice starts by placing one of her tiles on the table.
Bob has to match the diamond face value of Alice’s tile in the next move. If
he is able to do that, then he wins; otherwise he loses.
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If the first move of Alice is , then Bob’s move will be . The
precode interpretation of this game is that Alice encodes into ; and Bob
decodes to . It might seem strange that encoding followed by decoding
does not have to be an identity relation. However, a lossy compression scheme
such as JPEG does not follow such strict rules either: the decoded image is
in general different from the encoded image.

Example 2 Let Fq be the finite field with q elements. Let Λ = Fq × Fq

be the set representing nonvertical lines, where (m, b) ∈ Λ represents the
line y = mx + b. Set (P,C, e, d) = (Fq, 2

Λ, e, d), where (x, S) belongs to the
encoding relation e if and only if there exists y ∈ Fq such that the point (x, y)
lies on each line contained in S; and the decoding relation d is the converse
of e. Notice that the cardinality of the encoding and decoding relations
|d| = |e| = q22q. This precode is a Blakley 2 out of q threshold scheme. In
fact, a subthreshold-size coalition S (i.e., |S| ≤ 1) decodes to any encoded
member x of Fq. This provides Shannon perfect security.

Example 3 Take as a plaintext P the space C1([0, 1]) of continuously dif-
ferentiable real-valued functions, and as a codetext the space of continuous
real-valued functions C([0, 1]). If we take differentiation as an encoding re-
lation e = {(f(x), f ′(x)) | f(x) ∈ C1([0, 1])} and integration as a decoding
relation d = {(f(x),

∫ x
0 f(x)dx + k) | f(x) ∈ C([0, 1]), k ∈ R}, then we obtain

a precode (P, C, e, d). The opposite (C, P, d, e) is a code.

Example 4 The high security login à la Purdy [11] can be understood as
a precode (P,C, e, ∅), where e is a publicly known one-way function from
the set of passwords P to enciphered words C. The decoding relation is by
design void. The resulting precode is a code, since d ◦ e = ∅ is a subset of
the identity relation on P .

The high security login shows that a code with empty decode relation
can be a useful tool. More straightforward examples of precode and codes
are provided by error correcting codes or cryptographic codes, such as the
following classical polyalphabetic cipher:

Example 5 Let A = Z/27Z be a 7-bit alphabet codifying ASCII characters.
Denote by N the natural numbers. A Vigenère cipher over A with a key
(k0, . . . , km−1) ∈ Am can be described by the precode (AN, AN, e, d), where e
is the function mapping a sequence (ai)i∈N to (ai + ki mod m mod 27)i∈N, and
the decode relation is given by its inverse function d = e−1.
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The period m of this cipher can be found with the help of a classical
method deviced by the Prussian colonel Friedrich Wilhelm Kasiski in 1863. A
cryptanalysis may then proceed with the simpler task of deciphering monoal-
phabetic homomorphic images.

Homomorphisms are generally useful in the design and analysis of codes.
We give a formal definition of homomorphisms in the next section.

3 Morphisms

A homomorphism from a precode (P, C, e, d) to a precode (P ′, C ′, e′, d′) is
given by an ordered pair 〈h, k〉 of functions h: P → P ′ and k: C → C ′ that
satisfy (h× k)(e) ⊆ e′ and (k × h)(d) ⊆ d′.

The category P of precodes is defined by taking precodes as objects
and precode homomorphisms as morphisms. The composition of arrows is
given by the composition of functions. Similarly, the category C of codes is
defined by taking code as objects and precode homomorphisms as morphisms.
Clearly, the category C is a full subcategory of the category P of precodes.

Proposition 6 Let f = 〈f1, f2〉: A → B be a homomorphism of precodes.
(a) The morphism f is monic if and only if f1 and f2 are injective functions.
(b) The morphism f is epic if and only if f1 and f2 are surjective functions.

Proof. (a) Suppose that f1 and f2 are injective functions, hence monic mor-
phisms in the category of sets. This immediately implies that f is monic.
Conversely, suppose that f is monic. Denote by S = ({p}, {c}, ∅, ∅) a precode
with singleton symbol sets. Let x and y be (necessarily constant) morphisms
from S to A. Since fx = fy implies x = y, it follows that f1 and f2 are
injective functions.

(b) Suppose that f1 and f2 are surjective functions, hence epimorphisms in
the category of sets. This implies that f is an epimorphism. Conversely,
suppose that f is an epimorphism. Seeking a contradiction, we assume that
not both f1 and f2 are surjective. Define the precode D = (2,2,2×2,2×2),
where 2 = {0, 1}. Let g and h be morphisms from B to D, namely let g be
the morphism that maps plaintext and codetext symbols to 0 and let h be
the morphisms that maps all plaintext and codetext symbols in the image of
f to 0 and everything else to 1. Therefore gf = hf , which implies h = g,
since f is an epimorphism. Thus we get the desired contradiction, since the
morphisms g and h are distinct by construction. 2
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Remark 7 If f = 〈f1, f2〉 is an isomorphism in the category of codes or in
the category of precodes, then f1 and f2 are bijective functions. However, the
categories C and P are not balanced, that is, a monic and epic morphism is
not necessarily an isomorphism. To see this, let ι denote the identity function
on 2. Then 〈ι, ι〉 is a monic and epic morphism from the code A = (2,2, ∅, ∅)
to the code B = (2,2, id, id) with identity encoding and decoding relations.
But it is obviously not an isomorphism.

4 Smashing

We establish in this section a fundamental connection between the category
of precodes and the category of codes: We derive a smash operation that
associates with each precode a code. It turns out that the smash is a functor –
a property which will be extremely valuable in the following sections.

Let A = (P,C, e, d) be a precode. In general, the composition of the
encoding and decoding relation d ◦ e will fail to be subdiagonal. However, if
we denote by E the smallest equivalence relation on P containing d ◦ e, and
by I the identity relation on C, then we obtain a precode A# as a quotient
of A in the following way:

A# = (P#, C, e#, d#),

where P# = P/E, e# = e/E⊗I , and d# = d/I⊗E. We say that A# is obtained
by smashing the plaintext symbols of the precode A, and we refer to E as
the smash equivalence relation.

Proposition 8 Let A be a precode, then A# is a code. If A is a code, then
A# = A. In particular, (A#)# = A#.

Proof. If (p1, p2) ∈ d ◦ e, then the plaintext symbols p1, p2 are related in the
smash equivalence relation E, forcing d# ◦ e# to be subdiagonal. If A is a
code, then the smashing relation of A# is the identity relation, which proves
the second assertion. 2

Theorem 9 Let α be a homomorphism from a precode A to a code B. De-
note by κ the natural homomorphism from A to A#. Then there exists a
uniquely determined homomorphism β from A# to B such that α = β ◦ κ.
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Proof. Let A = (P,C, e, d). Suppose that (p1, p2) ∈ d ◦ e, that is, there
exists an encoding of the plaintext symbol p1 that can be decoded to p2

in A. The homomorphism α = 〈α1, α2〉 has to map p1 to the same plaintext
symbol as p2, since B is a code. This means that α1(p1) = α1(p2). Therefore,
the equivalence relation on P induced by α1 contains the smash equivalence
relation. Hence, the map β1 from the plaintext symbol set of A# to the
plaintext symbol set of the code B, given by β1(p1) = α1(p1), where p1 is
the equivalence class of p1 in E, is well-defined. The homomorphism β is
given by β = 〈β1, α2〉. It is clear from the definitions that this is indeed a
homomorphism. This homomorphism is uniquely determined, since κ is an
epimorphism. 2

Theorem 10 The smash (−)# is a covariant functor from the category P

of precodes to the category C of codes.

Proof. Suppose that f : A → B is a morphism of precodes. Then we obtain
a commuting diagram

A
f //

κA

²² !!DD
DD

DD
DD

B

κB

²²
A#

f#

// B#

where the vertical arrows are given by the canonical maps from the precodes
A and B to the codes A# and B#, respectively. The diagonal arrow κB ◦
f is a precode homomorphisms from the precode A to the code B#. By
Theorem 9, there exists a uniquely determined homomorphism f# such that
κB ◦ f = f# ◦ κA. The uniqueness implies that (g ◦ f)# = g# ◦ f# holds
for any composable pair of precode homomorphisms f and g. Therefore #
is a covariant functor from the category P of precodes to the category C of
codes. 2

Denote by F : C → P the inclusion functor from the category of codes to
the category of precodes, and by IP the identity functor on the category P

of precodes. Viewing the codes A# and B# as precodes, the diagram in the
previous proof shows the following result:

Corollary 11 Let κ be the transform that associates to each object A in P

the canonical homomorphism κA: A → F (A#). Then κ is a natural transform
from the identity functor IP to the functor F ◦ (−)# given by the composition
of the smash functor with the inclusion functor.
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Theorem 12 The smash functor (−)#: P → C and the inclusion functor
F : C → P constitute an adjoint pair (−)# a F .

Proof. Let A be a precode, and D be a code. Suppose that there exists a
code morphism g: A# → D. According to Theorem 9, the canonical precode
morphism κA from A to the precode F (A#) is universal in the sense that to
each f : A → F (D) there exists exactly one g as in the following diagram:

A#

g

²²

A
κA //

f ''OOOOOOOOOOOOO F (A#)

Fg

²²
D F (D)

In other words, θ(g) = Fg ◦ κA defines a bijection

θ: MorC(A#,D) −→ MorP(A, FD).

This bijection θ is natural in A because κ is natural in A by Corollary 11,
and natural in D since F is a functor. 2

Finding adjoint pairs is always beneficial. For instance, we obtain the
following useful fact from general results of category theory:

Corollary 13 The inclusion functor F preserves limits, and the smash func-
tor (−)# preserves colimits. The category C of codes is a reflective subcate-
gory of the category P of precodes.

We will exploit this fact in the definition of coequalizers of codes in Section 7.
This will also allow us to answer the question whether or not it is possible
to find a construction dual to the smash.

5 Limits

We focus now on particular constructions of codes and precodes. In this
section, we will see that products, pullbacks, and more general limits exist
in the categories P and C.

Recall that a diagram D in an arbitrary category K is a directed graph
whose vertices i ∈ I are labelled by objects Ri in K and whose edges i → j
are labelled by morphisms in HomP(Ri,Rj). The underlying graph is called

8



the scheme of the diagram. A family of morphisms (fi: A → Ri)i∈I with
common domain A is said to be a cone for D, provided that for each arrow
d : Ri → Rj in the diagram D, the triangle

A

fi

²²

fj

ÃÃA
AA

AA
AA

Ri d
// Rj

commutes. A limit for D is a cone for D with the universal property that
any other cone for D uniquely factors through it. In other words, if (fi: A →
Ri)i∈I is the limit of a diagram D and (gi: B → Ri)i∈I is a cone for D, then
there exists exists exactly one arrow u: B → A such that gi = fi ◦ u for all
i ∈ I.

Let (ri)i∈I be a family of relations indexed by a set I, where ri ⊆ Pi×Ci.
We can define a product of these relations by

∏
ri =



 (p, c) ∈ ∏

i∈I

Pi ×
∏

j∈I

Cj | ∀i ∈ I (p(i), c(i)) ∈ ri



 .

Theorem 14 The category P of precodes has products. The product of a
family of codes is again a code.

Proof. Let Ri = (Pi, Ci, ei, di), i ∈ I, be a family of precodes indexed by a
set I. The product of this family is obtained by taking cartesian products of
the symbol sets, and the product of the encoding and decoding relations. In
other words, the product of the family Ri is given by (R, (πi: R → Ri)i∈I),
where the precode R is given by the object (

∏
i∈I Pi,

∏
i∈I Ci,

∏
i∈I ei,

∏
i∈I di),

and the projection map πi is the obvious map onto the ith component. It is
clear that R is a code if and only if all Ri are codes. 2

The equalizer (E, u) of two morphisms f, g: R → A is an object E together
with a morphism u: E → R such that fu = gu, with the additional property
that every morphism h satisfying fh = gh factors uniquely through u. In
other words, the triangle in the following diagram commutes for any such h:

E
u // R

f //
g

// A

B

ε

OO

h

??ÄÄÄÄÄÄÄ
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Recall that in the category of sets, the equalizer of two functions f, g: R → A
is given by the coincidence set {x ∈ R | f(x) = g(x)} with the inclusion
mapping.

Theorem 15 The category P of precodes has equalizers. If (E, u) is the
equalizer of two morphisms between codes, then E is also a code.

Proof. Let R = (P,C, e, d) and A be precodes. Let f = 〈f1, f2〉 and
g = 〈g1, g2〉 be a pair of morphisms between R and A. We give an explicit
construction of the equalizer.

The equalizer (E, u) of f and g is given by the precode E = (P ∗, C∗, e∗, d∗),
where the plaintext symbols P ∗ = { a ∈ P | f1(a) = g1(a) } and codetext
symbols C∗ = { a ∈ C | f2(a) = g2(a) } are just coincidence sets, and the
encoding and decoding relations are obtained from R by restriction, that is,
e∗ = e |P ∗×C∗ , d∗ = d |C∗×P ∗ , and the morphism u = 〈ι1, ι2〉 is induced by the
set inclusion maps ι1: P

∗ → P , ι2: C
∗ → C.

The construction ensures that u(E) is the largest subprecode of R such
that the restrictions of the functions f and g on u(E) coincide, f |u(E) = g|u(E).
We can express h by a composition of a morphism ε: B → E with u, since
h(B) is a subprecode of u(E). The morphism ε is uniquely determined, since
u is a monomorphism. 2

Theorem 16 The category P of precodes and the category C of codes are
complete.

Proof. The categories P and C have products and equalizers and are there-
fore complete [1, 8]. The main idea of this standard construction goes as
follows. Suppose that we are given a diagram D in P with sets V of vertices
and E of edges. We build two products: the product of all objects in D,
and the product indexed by E of all codomains of arrows in D. The univer-
sal property of the E-indexed product induces unique maps ψ1 and ψ2 as is
shown in the following diagram:

Rj

L
h //

ci

%%LLLLLLLLLLLLL
∏

i∈V Ri

πj

55kkkkkkkkkkkkkkkkk ψ1 //

ψ2

//

πi

²²

∏
(Rj | i e→ j ∈ E)

π̃e

OO

π̃e

²²
Ri

de // Rj
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The map h is given by the equalizer of ψ1 and ψ2, and the maps ci are
given by composition of h with the projection maps πi, that is, ci = πi h.
It is not difficult to see that (L, (ci)i∈I) is a cone of D. It follows from the
universality of the equalizer and of the V -indexed product that this cone is
the limit of D. 2

6 Examples

In this section, we give some specific examples to illustrate a few essential
aspects of the theory developed so far. The first example shows how to view
the RSA public key cryptosystem as a code in the sense of Section 2. We
show that the RSA scheme is a product of two Pholig-Hellman schemes. On
the other hand, under some mild assumptions, it is possible to construct the
RSA system as a product of two Pholig-Hellman ciphers. And we give a
recent example from coding theory to illustrate the limit concept.

Example 17 (RSA) Denote by p and q two distinct odd primes. A key set-
ting of an RSA public key cryptosystem [12] can be seen as a code over the
symbol set Z/pqZ, where the encoding relation e is given by the function x 7→
xε mod pq and the decoding relation d is given by x 7→ xδ mod pq. The expo-
nents are assumed to satisfy the congruence εδ ≡ 1 mod ϕ(pq), where ϕ is Eu-
ler’s totient function. We denote this code by RSA = (Z/pqZ,Z/pqZ, e, d).

Reducing the symbol sets modulo p and q respectively, one obtains two
key-settings of Pohlig-Hellman cryptosystems [10], denoted by

PH1 = (Z/qZ,Z/qZ, e1, d1) and PH2 = (Z/pZ,Z/pZ, e2, d2).

The encoding and decoding relations are obtained from e and d by reducing
modulo p and q respectively. For instance, the relation e1 is given by the
function x 7→ xε mod q.

The RSA code is, in the terminology introduced in the previous section,
an example of a product of the codes PH1 and PH2.

Example 18 (RSA, cont’d) Conversely, given two Pohlig-Hellman codes

PH1 = (Z/qZ, Z/qZ, x 7→ xε1 mod q, x 7→ xδ1 mod q)
PH2 = (Z/pZ, Z/pZ, x 7→ xε2 mod p, x 7→ xδ2 mod p)
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and assuming that gcd(p− 1, q − 1)|(ε1 − ε2), then it is easy to see that the
greatest common divisor of p − 1 and q − 1 divides δ1 − δ2. The Chinese
remainder theorem yields the integers ε, δ satisfying

ε ≡ ε1 mod q − 1,
ε ≡ ε2 mod p− 1,

δ ≡ δ1 mod q − 1,
δ ≡ δ2 mod p− 1,

respectively. The RSA code

(Z/pqZ,Z/pqZ, x 7→ xε mod pq, x 7→ xδ mod pq)

is then isomorphic to the product of PH1 and PH2.

Example 19 (Codes over p-adic Integers) The famous explanation of
the nonlinear Kerdoc and Preparata error control codes as linear codes over
Z/4Z gave rise to other explorations of Hensel lifting in coding theory.
Calderbank and Sloane investigated in [4] a series of Hamming codes over the
symbol sets Z/2nZ. The familiar binary [7,4] Hamming code has generator
polynomial x3 + x + 1. Hensel lifting of this generator polynomial to Z/4Z
gives a unique monic irreducible polynomial that divides x7 − 1 in Z/4Z[x].
Proceeding further, one obtains a series of cyclic codes over Z/8Z, Z/16Z,
Z/32Z, etc. The 2-adic lift of the binary Hamming code is then the error
control code over the ring of 2-adic integers with generator matrix




1 λ λ∗ −1 0 0 0
0 1 λ λ∗ −1 0 0
0 0 1 λ λ∗ −1 0
0 0 0 1 λ λ∗ −1


 ,

where λ is the 2-adic integer (1−√−7)/2, and λ∗ = λ− 1.
The code (Z4

2,Z
7
2, e, d) corresponding to this Hamming code over the 2-

adic integers Z2 is a special case of the limit construction of codes described
in Section 5.

Example 20 (Diffie-Hellman Key Exchange) A builder, Bill, publishes
a (multiplicatively written) group G and a member g of G. We denote by H
the cyclic subgroup of G generated by g.

Alice picks a secret exponent α ∈ N, Bob a secret exponent β ∈ N.
Alice sends Bob her public member a = gα of the group H. Bob sends Alice
his public b = gβ. Alice knows Bob’s b and her α, so she is able to decode
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the codetext pair (b, α) to produce a plaintext j = bα = (gβ)α = gβα ∈ H.
Similarly, Bob knows his exponent β and Alice’s a, so he can decode the pair
(a, β) to produce the same plaintext j, by calculating j as j = aβ = (gα)β =
gαβ = gβα. Alice and Bob thus share knowledge of j, which they believe
others (even Bill) will find hard to calculate. This protocol is the well-known
Diffie-Hellman key exchange scheme [5].

The Diffie-Hellman key exchange is a self-companion code (P, C, e, d),
that is, the decoding relation d is the converse of the encoding relation.
Indeed, take the cyclic group H as plaintext P , the codetext C = H\{1}×N,
the decoding relation is d = {((h, τ), hτ ) : h ∈ H \ {1}, τ ∈ N}, and the
encoding relation is the converse.

It is easy to see that d is a function, hence its converse, e, is a one-to-many
relation. And determining an output pair (h, τ) corresponding to an input
element j seems a difficult problem. The most obvious way to attack it is to
solve a discrete logarithm problem [5].

Who performed the encode? Nobody. Bill produced the entire encode
relation e, but only implicitly, when he chose the group G and its member g.
But it is widely believed that, if he chose adroitly, neither he nor anybody
else can readily produce a pair (j, (h, τ)) belonging to e, given a randomly
chosen element j ∈ H.

7 Colimits

We provide more constructions of codes and precodes in this section. We
show that coproducts, coequalizers, pushouts, and more general colimits ex-
ist. Unlike in the case of limits, these constructions will now differ in the
case of codes and precodes.

Theorem 21 The category P of precodes has coproducts. The coproduct of
a family of codes is again a code. In particular, the category C of codes has
coproducts.

Proof. The coproduct (K, (ιi: Ri → K)i∈I) of the family Ri is given by
the disjoint union of the symbol sets and the induced disjoint union of the
encoding and decoding relations together with the obvious inclusion maps.
In other words,

K =

(⋃

i∈I

Pi × {i},
⋃

i∈I

Ci × {i},
⋃

i∈I

ei ⊗∆i,
⋃

i∈I

di ⊗∆i

)
,
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where ∆i denotes the relation ∆i = {(i, i)}.
It is clear that K is a code if and only if all Ri are codes. 2

Theorem 22 The category P has coequalizers.

Proof. Let R and A = (P, C, e, d) be precodes, and let f = 〈f1, f2〉 and
g = 〈g1, g2〉 be a pair of morphisms from R to A. Let E1 be the smallest
equivalence relation on P such that f1(a) and g1(a) are equivalent. Simi-
larly, let E2 be the smallest equivalence relation on P such that f2(a) and
g2(a) are equivalent. The coequalizer of f and g is given by the precode
(P/E1, C/E2, e/E1 ⊗ E2, d/E2 ⊗ E1) and the morphism 〈c1, c2〉 induced by
the canonical quotient maps c1: P → P/E1 and c2: C → C/E2. 2

Theorem 23 The category C of codes has coequalizers.

Proof. Let A and B be codes, and let f = 〈f1, f2〉 and g = 〈g1, g2〉 be
a pair of homomorphisms from A to B. The coequalizer of f and g in
the category C of codes is the smash of the coequalizer of f and g in the
category P of precodes. To see this, consider the diagram

A
f //
g

// B
c //

h
''PPPPPPPPPPPPPPPP D

ÃÃ

κ // D#

²²
E

Suppose that h is a morphism from B to a code E that coequalizes f and
g. Denote by (D, c) the coequalizer of f and g in P. There exists a unique
homomorphism from the precode D to the code E. Hence, by Theorem 9
there exists a unique homomorphism from the code D# to E. Since the code
morphism κ ◦ c coequalizes f and g, we can conclude that (D#, κ ◦ c) is the
coequalizer of f and g. 2

We give an example to illustrate the difference between P-coequalizers
and C-coequalizers of codes. This shows that colimits of codes are in general
not preserved under the inclusion functor F : C → P.

Example 24 Let A and B be the codes given by A = ({1, 2}, {1, 2}, ∅, ∅)
and B = ({1, 2}, {1, 2}, id, id). Let f = 〈ι, ι〉 and g = 〈ι, σ〉 be the homomor-
phisms from A to B where ι denotes the identity function and σ the bijection

14



σ = {1 7→ 2, 2 7→ 1}. The coequalizer of f and g in the category P of pre-
codes maps onto the precode ({1, 2}, {1}, {(1,1), (2,1)}, {(1, 1), (1, 2)}). In
contrast, the coequalizer of f and g in the category of code maps onto the
code ({1}, {1}, {(1,1)}, {(1,1)}).

The combination of the results derived in this section yield the following
theorem:

Theorem 25 The category P of precodes and the category C of codes are
cocomplete.

Proof. Both categories have coproducts and coequalizers, hence are cocom-
plete. 2

8 Split

In view of Section 4, it is natural to wonder whether or not it is possible
to dualize the smash construction. We will refer to this alleged dual as the
split. In search of the split construction, we found several interesting results.
One of us (T.H.) showed that the split exists if we restrict ourselves to self-
companion precodes and codes [7].

Suppose that we are given a homomorphism α from a code B to a pre-
code A. The question is whether we can associate to the precode A a code
A‖ and a canonical homomorphism κA: A‖ → A such that there exists a
uniquely determined homomorphism β: B → A‖ satisfying α = κA ◦ β. We
say that (A‖, κA) is the split of the precode A.

Theorem 26 There exists a precode for which no split exists.

Proof. Seeking a contradiction, we assume that it is possible to find for
each precode A such a code A‖ satisfying the above universality condition.
Similar to the arguments in Section 4, we would obtain a covariant functor ‖.
As a consequence of the universality condition, this functor ‖ must be right
adjoint to the inclusion functor F , cf. Theorem 2 (iv) in [8, p. 83]. Thus,
in particular, the inclusion functor would be left adjoint. Since left adjoint
functors respect colimits, we can conclude from Example 24 that the split
does not exist for all precodes. 2
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9 Factorizations

We investigate now some properties of morphisms in the categories P and C.
We will particularly focus on epimorphisms. Several interesting refinements
of the concept of an epimorphism have been introduced: extremal, strong and
regular epimorphisms. We will characterize these classes of epimorphisms in
the categories of precodes and codes. We will obtain most of the results by
deriving a factorization structure for precode and code morphisms, which has
many other interesting consequences as well.

Recall that an epimorphism in the category of codes is not necessarily
surjective on the encoding or decoding relations. This motivates the following
definition: An epimorphism 〈f1, f2〉: (P, C, e, d) → (P ′, C ′, e′, d′) is said to be
strong in the sense of Blakley and Borosh or simply BB-strong if and only
if it is surjective on both the encoding and the decoding relations, that is, if
(f1 × f2)(e) = e′ and (f2 × f1)(d) = d′ holds.

The next proposition relates this set-theoretic concept (which has been
introduced in [3]) to a standard notion in category theory. Recall that an
epimorphism is said to be regular if and only if it is a coequalizer of two
arrows.

Proposition 27 Suppose that f is a morphism in the category P of precodes
or in the category C of codes. Then f is a BB-strong epimorphism if and
only if it is a regular epimorphism.

Proof. Suppose that f is a regular epimorphism. It follows directly from
the definitions that f is BB-strong.

Conversely, let f = 〈f1, f2〉: A → B be a BB-strong epimorphism. Con-
struct the pullback of f with itself

A×B A
p2=〈p21,p22〉 //

p1=〈p11,p12〉
²²

A

f

²²
A

f
// B

We claim that f is the coequalizer of the projection morphisms p1 and p2. It
is clear from the construction that f coequalizes p1 and p2, that is, f ◦ p1 =
f ◦ p2. Suppose that g = 〈g1, g2〉: A → D is another morphism coequalizing
p1 and p2.

16



Define k = 〈k1, k2〉: B → D as follows. Let k1(f1(p)) = g1(p) for each
p in the plaintext of A, and k2(f2(c)) = g2(c) for each c in the codetext of
A. Since f is epic, f1 and f2 are surjective, hence the maps k1 and k2 are
determined on all elements of the symbol sets of B. It remains to check that
〈k1, k2〉 is a well-defined homomorphism.

If p̃ is another element of the plaintext symbol set of A with f(p̃) = f(p),
then (p̃, p) is in the plaintext of A ×B A. Hence g1(p̃) = (g1 ◦ p11)(p̃, p) =
(g1 ◦ p21)(p̃, p) = g1(p). Thus the function k1 is well-defined and k1 ◦ f1 = g1.
Analogously, k2 is a well-defined function satisfying k2 ◦ f2 = g2.

For each pair (p′, c′) in the encoding relation of B there exists a pair in
(p, c) in the encoding relation of A with (f1(p), f2(c)) = (p′, c′), since f is
BB-strong. Hence (k1 × k2)(p

′, c′) = (k1 × k2)(f1(p), f2(c)) = (g1(p), g2(c)).
A similar argument shows that each element in the decoding relation of B is
mapped via k2×k1 to an element of the decoding relation of D. Therefore, k
is indeed a well-defined homomorphism. This homomorphism is unique since
f is epic. Consequently, f is the coequalizer of the projection maps p1 and
p2, as claimed. 2

Proposition 28 In the category of precodes and in the category of codes,
any morphism f can be factored into a regular epimorphism p followed by a
monomorphism i, f = i ◦ p.

Proof. Factor f = 〈f1, f2〉: (P,C, e, d) → B through its image

(f1(P ), f2(C), (f1 × f2)(e), (f2 × f1)(d)).

The morphism obtained from f by restricting the codomain of f to its image
is a regular epimorphism according to the previous proposition. 2

This proposition has surprisingly many consequences. For instance, it
allows us to characterize the extremal epimorphisms. Recall that an epimor-
phism e is said to be extremal if in any factorization e = m ◦ f , with m a
monomorphism, the morphism m must be an isomorphism. It is known that
regular epimorphisms are extremal. A direct consequence of the previous
proposition is that the converse holds in the category of precodes or codes:

Corollary 29 In the category P of precodes and in the category C of codes,
an extremal epimorphism is regular.
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It is also known that regular epimorphisms are strong, and strong epimor-
phism are extremal. Thus, the classes of extremal, strong, and regular epi-
morphism coincide in the categories P and C.

Another consequence of the previous proposition is that the factorization
of a morphism into a regular epimorphism followed by a monomorphism is
essentially unique:

Corollary 30 Let f be a morphism in the category P or C. Suppose that
f can be factored as f = i ◦ p and as f = j ◦ q, where p, q are regular
epimorphisms, and i, j are monomorphisms. Then there exists a uniquely
determined morphism h such that the following diagram commutes

•

h

²²

i

ÂÂ@
@@

@@
@@

•
p

??~~~~~~~

q
ÂÂ@

@@
@@

@@
•

•
j

??~~~~~~~

Proof. Any (regular epi, mono)-factorization is unique in the above sense.
This is a standard fact of category theory, cf. Proposition 17.18 in [6]. 2

We have now established that each morphism can be factorized into a
regular epimorphism followed by a monomorphism in an essentially unique
way. The class of regular epimorphisms as well as the class of monomorphisms
are closed under composition. This demonstrates that the categories P and
C have a (regular epi, mono)-factorization system, cf. [6, §33]:

Corollary 31 The categories P and C are (regular epi, mono)-categories.

Factorization systems always yield a characterization of isomorphisms, namely
the intersection of the class of regular epimorphisms with the class of monomor-
phisms yields precisely the class of isomorphisms:

Corollary 32 Let f be a morphism in the category P or in the category C.
The morphism f is an isomorphism if and only if it is a regular epimorphism
as well as a monomorphism.
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10 Regularity

We will show in this section that the categories P and C are regular. Regular
categories allow to formulate the concept of an exact sequence – the pervailing
concept of homological algebra – without reference to zero-objects. This level
of abstraction is necessary, since zero-objects do not exist in the categories
P and C.

The lack of zero-objects, hence kernels, makes it necessary to find a sim-
ilar but slightly weaker notion. A kernel pair is the pullback of an arrow
with itself. This concept replaces the familiar notion of a kernel. An exact
sequence in a regular category is a diagram

P
u //
v

// A
f // B

where (u, v) is the kernel pair of f and f is the coequalizer of (u, v).
A category is said to be regular provided that (1) each arrow has a kernel

pair, (2) every kernel pair has a coequalizer, and (3) the pullback of regular
epimorphisms along any morphism exists and is again regular.

We only need to show condition (3), since the other conditions follow
from the completeness and cocompleteness of our categories. Let us introduce
some convenient notation. If A = (P, C, e, d) is a precode, then P(A) denotes
the plaintext symbol set P of A, and C(A) denotes the codetext symbol set
C(A) of P .

Lemma 33 The pullback of an epimorphism is again an epimorphism in the
category P of precodes and in the category C of codes.

Proof. Given a pullback diagram

A×D B
p2=〈p21,p22〉 //

p1=〈p11,p12〉
²²

B

f=〈f1,f2〉
²²

A
g=〈g1,g2〉

// D

with epimorphic f , we need to show that the projection morphism p1 is
epimorphic. The induced commutative squares

P(A×D B)
p21 //

p11

²²

P(B)

f1

²²
P(A) g1

// P(D)

C(A×D B)
p22 //

p12

²²

C(B)

f2

²²
C(A) g2

// C(D)
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on the plaintext symbol sets and on the codetext symbol sets are pullback
squares in the category of sets. Thus p11 and p12 are epimorphism in sets,
hence surjective mappings. Therefore p1 = 〈p11, p12〉 is an epimorphism (in
P or C). 2

Lemma 34 In P and in C, the pullback of a regular epimorphism is a regular
epimorphism.

Proof. Given a pullback diagram

A×D B
p2=〈p21,p22〉 //

p1=〈p11,p12〉
²²

B

f=〈f1,f2〉
²²

A
g=〈g1,g2〉

// D

with regular epimorphic f , we need to show that the projection morphism p1

is a regular epimorphism. We know that p1 is an epimorphism by the previous
lemma. By Proposition 27, it suffices to show that the encoding and decoding
relations of A×D B are mapped onto the encoding and decoding relations of
A, respectively.

Let (p, c) be an arbitrary pair in the encoding relation of A. Since f
is surjective on relations, we can find (p′, c′) in the encoding relation of B

such that (g1(p), g2(c)) = (f1(p
′), f2(c

′)). Therefore, ((p, p′), (c, c′)) is in the
encoding relation of the pullback A×D B. Hence (p11× p12)((p, p

′), (c, c′)) =
(p, c). Therefore, p1 maps the encoding relation of A×D B onto the encoding
relation of A. Analogously, one shows that the decoding relation of A×D B

is mapped onto the decoding relation of A. Thus we can conclude that p1 is
BB-strong and hence regular. 2

Theorem 35 The category P of precodes and the category C of codes are
regular.

Proof. A category is called regular if it has finite limits, coequalizers, and in
which the pullback of a regular epimorphism is a regular epimorphism. The
claim follows from Theorem 16, Theorem 25, and Lemma 34. 2
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11 Cartesian Closedness

We have seen that the categories P and C share many properties. They are,
for instance, both regular, complete, and cocomplete. In this section, we
discuss a property which is not shared by both categories.

Recall that a category A is called cartesian closed provided that it has
finite products, and the functors ×A: A → A are left adjoint for each object
A in A. The associated right adjoint is said to be an exponential functor and
is denoted by ( )A.

Thus, a category with finite products is cartesian closed if and only if
for each pair (A,B) of objects there exists an exponential object BA and an
evaluation morphism ev: BA×A → B with the following universal property:
for each morphism f : D×A → B there exists a unique morphism f̂ : D → BA

such that

D×A

f̂× id
²²

f

''OOOOOOOOOOOOO

BA ×A ev
// B

commutes. The most familiar example of a cartesian closed category is the
category of sets with functions as morphisms:

Example 36 Let Set be the category of sets with functions as morphisms. If
A and B are sets, then BA is given by the set of functions from A to B. Note
that ev is given by the usual function evaluation. Suppose that f : D×A → B
is given, then f̂ : D → BA is determined by the rule [f̂(d)](a) = f(d, a).

We now show that the category of precodes is cartesian closed as well:

Theorem 37 The category P is cartesian closed.

Proof. Since we already know that finite products exist, we are left to show
that an object BA and an evaluation map ev with the associated universal
properties exists.

1. Suppose that A = (P, C, e, d) and B = (P̄ , C̄, ē, d̄) are precodes. We
define the associated exponential object BA = (P̄ P , C̄C , E, D) with the
help of the encoding relation

E =
{
(g1, g2) ∈ P̄ P × C̄C | (p, c) ∈ e ⇒ (g1(p), g2(c)) ∈ ē

}
,
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and the decoding relation

D =
{
(h2, h1) ∈ C̄C × P̄ P | (c, p) ∈ d ⇒ (h2(c), h1(p)) ∈ d̄

}
.

The morphism ev = 〈ev1, ev2〉 consists of evaluation maps. Note that
this is indeed a homomorphism thanks to the definition of E and D.

2. Let D = (P ′, C ′, e′, d′) be a precode, and f = 〈f1, f2〉: D×A → B be a
precode homomorphism. We can uniquely define functions f̂1: P

′ → P̄ P

and f̂2: C
′ → C̄C by their values

[f̂1(pD)](pA) = f1(pD, pA) for all (pD, pA) ∈ P(D)×P(A),

[f̂2(cD)](cA) = f2(cD, cA) for all (cD, cA) ∈ C(D)×C(A).

It remains to show that f̂ = 〈f̂1, f̂2〉 is a precode homomorphism.

3. Let (pD, p∗D) ∈ e′ and (cD, c∗D) ∈ d′. Since f is a precode morphism,
we obtain for all (pA, p∗A) ∈ e and (cA, c∗A) ∈ d a relation of the the
function values

(f1(pD, pA), f1(p
∗
D, p∗A)) ∈ ē, (f2(cD, cA), f2(c

∗
D, c∗A)) ∈ d̄.

In other words, this shows that

(a) [f̂1(pD)](pA) and [f̂1(pD)](p∗A) are related in ē for all (pA, p∗A) ∈ e,

(b) [f̂2(cD)](cA) and [f̂2(cD)](c∗A) are related in d̄ for all (cA, c∗A) ∈ d.

It follows from the definition of BA that the functions f̂1(pD) and f̂1(p
∗
D)

are related in E, and that f̂2(cD) and f̂2(c
∗
D) are related in D.

Therefore, P is cartesian closed. 2

The exponential object BA is in general not a code, even if both A and
B are codes. Unfortunately, there is no way to repair this defect, as the
following theorem shows.

Theorem 38 The category C of codes is not cartesian closed.
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Proof. If a category is cartesian closed, then this means that each functor
×A is left adjoint. Thus, in particular, this functor must preserve colimits

such as coequalizers.
Let A = B = ({p}, {c}, ∅, ∅) and D = ({1, 2}, {1, 2}, id, id). We define

two morphisms f, g: B → D with f = 〈f1, f2〉 and g = 〈g1, g2〉 by

f1 = p 7→ 1, f2 = c 7→ 1, g1 = p 7→ 1, g2 = c 7→ 2

The coequalizer of f and g is given by the code E = ({p}, {c}, {(p, c)}, {(c, p)}).
Hence, the image under the functor is E×A ∼= A.

On the other hand, the coequalizer of f × id and g × id from B × A to
D×A is given by K = ({1, 2}, {1}, ∅, ∅). Therefore, the functor ×A cannot
be left adjoint. 2

12 Conclusions

We have investigated the structure of the category of precodes and the cate-
gory of codes. Limit and colimit constructions yield a wealth of possibilities
to build new codes. Error control codes over 2-adic integers are only a first
step towards the more general code constructions described in this paper. An
interesting aspect of our categorical approach was to explore the relationship
between the two categories via functors. We gained deep insights by proving
the existence or nonexistence of certain functors. For instance, the smash
functor allowed us to transfer all the colimit constructions from the category
of precodes to the category of codes. On the other hand, we could show
the nonexistence of the split – the dual concept of the smash – by proving
the nonexistence of a functor. An interesting direction for future research
is the investigation of subcategories. Exploring subcategories of codes with
additional algebraic structure will be a natural next step.
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