463 research outputs found

    Spin orbit alignment for KELT-7b and HAT-P-56b via Doppler tomography with TRES

    Full text link
    We present Doppler tomographic analyses for the spectroscopic transits of KELT-7b and HAT-P-56b, two hot-Jupiters orbiting rapidly rotating F-dwarf host stars. These include analyses of archival TRES observations for KELT-7b, and a new TRES transit observation of HAT-P-56b. We report spin-orbit aligned geometries for KELT-7b (2.7 +/- 0.6 deg) and HAT-P-56b (8 +/- 2 deg). The host stars KELT-7 and HAT-P-56 are among some of the most rapidly rotating planet-hosting stars known. We examine the tidal re-alignment model for the evolution of the spin-orbit angle in the context of the spin rates of these stars. We find no evidence that the rotation rates of KELT-7 and HAT-P-56 have been modified by star-planet tidal interactions, suggesting that the spin-orbit angle of systems around these hot stars may represent their primordial configuration. In fact, KELT-7 and HAT-P-56 are two of three systems in super-synchronous, spin-orbit aligned states, where the rotation periods of the host stars are faster than the orbital periods of the planets.Comment: 9 pages, accepted for publication in MNRA

    Multiwavelength transit observations of the candidate disintegrating planetesimals orbiting WD 1145+017

    Full text link
    We present multiwavelength, ground-based follow-up photometry of the white dwarf WD 1145+017, which has recently been suggested to be orbited by up to six or more short-period, low-mass, disintegrating planetesimals. We detect nine significant dips in flux of between 10% and 30% of the stellar flux in our ~32 hr of photometry, suggesting that WD 1145+017 is indeed being orbited by multiple, short-period objects. Through fits to the asymmetric transits that we observe, we confirm that the transit egress is usually longer than the ingress, and that the transit duration is longer than expected for a solid body at these short periods, all suggesting that these objects have cometary tails streaming behind them. The precise orbital periods of the planetesimals are unclear, but at least one object, and likely more, have orbital periods of ~4.5 hr. We are otherwise unable to confirm the specific periods that have been reported, bringing into question the long-term stability of these periods. Our high-precision photometry also displays low-amplitude variations, suggesting that dusty material is consistently passing in front of the white dwarf, either from discarded material from these disintegrating planetesimals or from the detected dusty debris disk. We compare the transit depths in the V- and R-bands of our multiwavelength photometry, and find no significant difference; therefore, for likely compositions, the radius of single-size particles in the cometary tails streaming behind the planetesimals must be ~0.15 μm or larger, or ~0.06 μm or smaller, with 2σ confidence

    Two 'b's in the Beehive: The Discovery of the First Hot Jupiters in an Open Cluster

    Full text link
    We present the discovery of two giant planets orbiting stars in Praesepe (also known as the Beehive Cluster). These are the first known hot Jupiters in an open cluster and the only planets known to orbit Sun-like, main-sequence stars in a cluster. The planets are detected from Doppler shifted radial velocities; line bisector spans and activity indices show no correlation with orbital phase, confirming the variations are caused by planetary companions. Pr0201b orbits a V=10.52 late F dwarf with a period of 4.4264 +/- 0.0070 days and has a minimum mass of 0.540 +/- 0.039 Mjup, and Pr0211b orbits a V=12.06 late G dwarf with a period of 2.1451 +/- 0.0012 days and has a minimum mass of 1.844 +/- 0.064 Mjup. The detection of 2 planets among 53 single members surveyed establishes a lower limit on the hot Jupiter frequency of 3.8 (+5.0)(-2.4) % in this metal-rich open cluster. Given the precisely known age of the cluster, this discovery also demonstrates that, in at least 2 cases, giant planet migration occurred within 600 Myr after formation. As we endeavor to learn more about the frequency and formation history of planets, environments with well-determined properties -- such as open clusters like Praesepe -- may provide essential clues to this end.Comment: 5 pages, 3 tables, 2 figures. Published in ApJ Letter

    Two Small Planets Transiting HD 3167

    Get PDF
    We report the discovery of two super-Earth-sized planets transiting the bright (V = 8.94, K = 7.07) nearby late G-dwarf HD 3167, using data collected by the K2 mission. The inner planet, HD 3167 b, has a radius of 1.6 R_e and an ultra-short orbital period of only 0.96 days. The outer planet, HD 3167 c, has a radius of 2.9 R_e and orbits its host star every 29.85 days. At a distance of just 45.8 +/- 2.2 pc, HD 3167 is one of the closest and brightest stars hosting multiple transiting planets, making HD 3167 b and c well suited for follow-up observations. The star is chromospherically inactive with low rotational line-broadening, ideal for radial velocity observations to measure the planets' masses. The outer planet is large enough that it likely has a thick gaseous envelope which could be studied via transmission spectroscopy. Planets transiting bright, nearby stars like HD 3167 are valuable objects to study leading up to the launch of the James Webb Space Telescope.Comment: Accepted by ApJL. 6 pages, 1 figure, 2 table

    Qatar Exoplanet Survey : Qatar-3b, Qatar-4b and Qatar-5b

    Get PDF
    We report the discovery of Qatar-3b, Qatar-4b, and Qatar-5b, three new transiting planets identified by the Qatar Exoplanet Survey (QES). The three planets belong to the hot Jupiter family, with orbital periods of PQ3bP_{Q3b}=2.50792 days, PQ4bP_{Q4b}=1.80539 days, and PQ5bP_{Q5b}=2.87923 days. Follow-up spectroscopic observations reveal the masses of the planets to be MQ3bM_{Q3b}=4.31±0.47\pm0.47 MJM_{\rm J}, MQ4bM_{Q4b}=6.10±0.54 \pm0.54 MJM_{\rm J}, and MQ5bM_{Q5b} = 4.32±0.18 \pm0.18 MJM_{\rm J}, while model fits to the transit light curves yield radii of RQ3bR_{Q3b} = 1.096±0.14 \pm0.14 RJR_{\rm J}, RQ4bR_{Q4b} = 1.135±0.11 \pm0.11 RJR_{\rm J}, and RQ5bR_{Q5b} = 1.107±0.064 \pm0.064 RJR_{\rm J}. The host stars are low-mass main sequence stars with masses and radii MQ3M_{Q3} = 1.145±0.064 \pm0.064 M⊙M_{\odot}, MQ4M_{Q4} = 0.896±0.048 \pm0.048 M⊙M_{\odot}, MQ5M_{Q5} = 1.128±0.056 \pm0.056 M⊙M_{\odot} and RQ3R_{Q3} = 1.272±0.14 \pm0.14 R⊙R_{\odot}, RQ4R_{Q4} = 0.849±0.063\pm0.063 R⊙R_{\odot} and RQ5R_{Q5} = 1.076±0.051\pm0.051 R⊙R_{\odot} for Qatar-3, 4 and 5 respectively. The V magnitudes of the three host stars are VQ3V_{Q3}=12.88, VQ4V_{Q4}=13.60, and VQ5V_{Q5}=12.82. All three new planets can be classified as heavy hot Jupiters (M > 4 MJM_{J}).Comment: 13Pages, 8Figure

    Multiwavelength Transit Observations of the Candidate Disintegrating Planetesimals Orbiting WD 1145+017

    Get PDF
    We present multiwavelength, multi-telescope, ground-based follow-up photometry of the white dwarf WD 1145+017, that has recently been suggested to be orbited by up to six or more, short-period, low-mass, disintegrating planetesimals. We detect 9 significant dips in flux of between 10% and 30% of the stellar flux from our ground-based photometry. We observe transits deeper than 10% on average every ~3.6 hr in our photometry. This suggests that WD 1145+017 is indeed being orbited by multiple, short-period objects. Through fits to the multiple asymmetric transits that we observe, we confirm that the transit egress timescale is usually longer than the ingress timescale, and that the transit duration is longer than expected for a solid body at these short periods, all suggesting that these objects have cometary tails streaming behind them. The precise orbital periods of the planetesimals in this system are unclear from the transit-times, but at least one object, and likely more, have orbital periods of ~4.5 hours. We are otherwise unable to confirm the specific periods that have been reported, bringing into question the long-term stability of these periods. Our high precision photometry also displays low amplitude variations suggesting that dusty material is consistently passing in front of the white dwarf, either from discarded material from these disintegrating planetesimals or from the detected dusty debris disk. For the significant transits we observe, we compare the transit depths in the V- and R-bands of our multiwavelength photometry, and find no significant difference; therefore, for likely compositions the radius of single-size particles in the cometary tails streaming behind the planetesimals in this system must be ~0.15 microns or larger, or ~0.06 microns or smaller, with 2-sigma confidence.Comment: 16 pages, 12 figures, submitted to ApJ on October 8th, 201

    Asteroseismic properties of solar-type stars observed with the NASA K2 mission: results from Campaigns 1-3 and prospects for future observations

    Get PDF
    We present an asteroseismic analysis of 33 solar-type stars observed in short cadence during Campaigns (C) 1-3 of the NASA K2 mission. We were able to extract both average seismic parameters and individual mode frequencies for stars with dominant frequencies up to ~3300{\mu}Hz, and we find that data for some targets are good enough to allow for a measurement of the rotational splitting. Modelling of the extracted parameters is performed by using grid-based methods using average parameters and individual frequencies together with spectroscopic parameters. For the target selection in C3, stars were chosen as in C1 and C2 to cover a wide range in parameter space to better understand the performance and noise characteristics. For C3 we still detected oscillations in 73% of the observed stars that we proposed. Future K2 campaigns hold great promise for the study of nearby clusters and the chemical evolution and age-metallicity relation of nearby field stars in the solar neighbourhood. We expect oscillations to be detected in ~388 short-cadence targets if the K2 mission continues until C18, which will greatly complement the ~500 detections of solar-like oscillations made for short-cadence targets during the nominal Kepler mission. For ~30-40 of these, including several members of the Hyades open cluster, we furthermore expect that inference from interferometry should be possible.Comment: 17 pages, 15 figures, 4 tables; accepted for publication in PAS

    EPIC 220204960: A Quadruple Star System Containing Two Strongly Interacting Eclipsing Binaries

    Get PDF
    We present a strongly interacting quadruple system associated with the K2 target EPIC 220204960. The K2 target itself is a Kp = 12.7 magnitude star at Teff ~ 6100 K which we designate as "B-N" (blue northerly image). The host of the quadruple system, however, is a Kp = 17 magnitude star with a composite M-star spectrum, which we designate as "R-S" (red southerly image). With a 3.2" separation and similar radial velocities and photometric distances, 'B-N' is likely physically associated with 'R-S', making this a quintuple system, but that is incidental to our main claim of a strongly interacting quadruple system in 'R-S'. The two binaries in 'R-S' have orbital periods of 13.27 d and 14.41 d, respectively, and each has an inclination angle of >89 degrees. From our analysis of radial velocity measurements, and of the photometric lightcurve, we conclude that all four stars are very similar with masses close to 0.4 Msun. Both of the binaries exhibit significant ETVs where those of the primary and secondary eclipses 'diverge' by 0.05 days over the course of the 80-day observations. Via a systematic set of numerical simulations of quadruple systems consisting of two interacting binaries, we conclude that the outer orbital period is very likely to be between 300 and 500 days. If sufficient time is devoted to RV studies of this faint target, the outer orbit should be measurable within a year.Comment: 20 pages, 18 figures, 7 tables; accepted for publication in MNRA
    • …
    corecore