37 research outputs found

    Impact of the Coulomb field on charged-pion spectra in few-GeV heavy-ion collisions

    Get PDF
    In nuclear collisions the incident protons generate a Coulomb field which acts on produced charged particles. The impact of these interactions on charged-pion transverse-mass and rapidity spectra, as well as on pion–pion momentum correlations is investigated in Au + Au collisions at SNN\sqrt{^{S}NN} = 2.4 GeV. We show that the low-mt_{t} region (mt_{t} < 0.2 GeV / c2^{2}) can be well described with a Coulomb-modified Boltzmann distribution that also takes changes of the Coulomb field during the expansion of the fireball into account. The observed centrality dependence of the fitted mean Coulomb potential energy deviates strongly from a Apart2/3A_{part}^{2/3} scaling, indicating that, next to the fireball, the non-interacting charged spectators have to be taken into account. For the most central collisions, the Coulomb modifications of the HBT source radii are found to be consistent with the potential extracted from the single-pion transverse-mass distributions. This finding suggests that the region of homogeneity obtained from two-pion correlations coincides with the region in which the pions freeze-out. Using the inferred mean-square radius of the charge distribution at freeze-out, we have deduced a baryon density, in fair agreement with values obtained from statistical hadronization model fits to the particle yields

    Measurement of global polarization of {\Lambda} hyperons in few-GeV heavy-ion collisions

    Full text link
    The global polarization of {\Lambda} hyperons along the total orbital angular momentum of a relativistic heavy-ion collision is presented based on the high statistics data samples collected in Au+Au collisions at \sqrt{s_{NN}} = 2.4 GeV and Ag+Ag at 2.55 GeV with the High-Acceptance Di-Electron Spectrometer (HADES) at GSI, Darmstadt. This is the first measurement below the strangeness production threshold in nucleon-nucleon collisions. Results are reported as a function of the collision centrality as well as a function of the hyperon transverse momentum (p_T) and rapidity (y_{CM}) for the range of centrality 0--40%. We observe a strong centrality dependence of the polarization with an increasing signal towards peripheral collisions. For mid-central (20--40%) collisions the polarization magnitudes are (%) = 6.0 \pm 1.3 (stat.) \pm 2.0 (syst.) for Au+Au and (%) = 4.6 \pm 0.4 (stat.) \pm 0.5 (syst.) for Ag+Ag, which are the largest values observed so far. This observation thus provides a continuation of the increasing trend previously observed by STAR and contrasts expectations from recent theoretical calculations predicting a maximum in the region of collision energies about 3 GeV. The observed polarization is of a similar magnitude as predicted by 3D fluid dynamics and the UrQMD plus thermal vorticity model and significantly above results from the AMPT model.Comment: 8 pages, 4 figure

    Analysis of the exclusive final state npe+e- in the quasi-free np reaction

    Get PDF

    Exploring time like tranistions in pp, πp and AA reactions with HADES

    No full text
    Radiative transition of an excited baryon to a nucleon with emission of a virtual massive photon converting to dielectron pair (Dalitz decays) provides important information about baryon-photon coupling at low q2 in timelike region. A prominent enhancement in the respective electromagnetic transition Form Factors (etFF) at q2 near vector mesons ρ/ω poles has been predicted by various calculations reflecting strong baryon-vector meson couplings. The understanding of these couplings is also of primary importance for the interpretation of the emissivity of QCD matter studied in heavy ion collisions via dilepton emission. Dedicated measurements of baryon Dalitz decays in proton-proton and pion-proton scattering with HADES detector at GSI/FAIR are presented and discussed. The relevance of these studies for the interpretation of results obtained from heavy ion reactions is elucidated on the example of the HADES results

    A facility for pion-induced nuclear reaction studies with HADES

    No full text
    International audienceThe combination of a production target for secondary beams, an optimized ion optical beam line setting, in-beam detectors for minimum ionizing particles with high rate capability, and an efficient large acceptance spectrometer around the reaction target constitutes an experimental opportunity to study in detail hadronic interactions utilizing pion beams impinging on nucleons and nuclei. For the 0.4-2.0GeV/c pion momentum regime such a facility is located at the heavy ion synchrotron accelerator SIS18 in Darmstadt (Germany). The layout of the apparatus, performance of its components and encouraging results from a first commissioning run are presented

    Exploring time like tranistions in pp, πp and AA reactions with HADES

    Get PDF
    Radiative transition of an excited baryon to a nucleon with emission of a virtual massive photon converting to dielectron pair (Dalitz decays) provides important information about baryon-photon coupling at low q2 in timelike region. A prominent enhancement in the respective electromagnetic transition Form Factors (etFF) at q2 near vector mesons ρ/ω poles has been predicted by various calculations reflecting strong baryon-vector meson couplings. The understanding of these couplings is also of primary importance for the interpretation of the emissivity of QCD matter studied in heavy ion collisions via dilepton emission. Dedicated measurements of baryon Dalitz decays in proton-proton and pion-proton scattering with HADES detector at GSI/FAIR are presented and discussed. The relevance of these studies for the interpretation of results obtained from heavy ion reactions is elucidated on the example of the HADES results

    Probing dense baryon-rich matter with virtual photons

    No full text
    International audienceAbout 10 μs after the Big Bang, the universe was filled—in addition to photons and leptons—with strong-interaction matter consisting of quarks and gluons, which transitioned to hadrons at temperatures close to kT = 150 MeV and densities several times higher than those found in nuclei. This quantum chromodynamics (QCD) matter can be created in the laboratory as a transient state by colliding heavy ions at relativistic energies. The different phases in which QCD matter may exist depend for example on temperature, pressure or baryochemical potential, and can be probed by studying the emission of electromagnetic radiation. Electron–positron pairs emerge from the decay of virtual photons, which immediately decouple from the strong interaction, and thus provide information about the properties of QCD matter at various stages. Here, we report the observation of virtual photon emission from baryon-rich QCD matter. The spectral distribution of the electron–positron pairs is nearly exponential, providing evidence for a source of temperature in excess of 70 MeV with constituents whose properties have been modified, thus reflecting peculiarities of strong-interaction QCD matter. Its bulk properties are similar to the dense matter formed in the final state of a neutron star merger, as apparent from recent multimessenger observation

    Analysis of the exclusive final state npe+e- in the quasi-free np reaction

    Get PDF
    We report on the investigation of dielectron production in tagged quasi-free neutron-proton collisions by using a deuteron beam of kinetic energy 1.25 GeV/u inpinging on a liquid hydrogen target. Our measurements with HADES confirm a significant excess of e+ee^+e^- pairs above the π0\pi^{0} mass in the exclusive channel dpnpe+e(pspect)dp \to npe^{+}e^{-}(p_{spect}) as compared to the exclusive channel ppe+eppe^{+}e^{-} measured in proton-proton collisions at the same energy. That excess points to different bremsstrahlung production mechanisms. Two models were evaluated for the role of the charged pion exchange between nucleons and double-Δ\Delta excitation combined with intermediate ρ\rho-meson production. Differential cross sections as a function of the e+ee^+e^- invariant mass and of the angles of the virtual photon, proton and electrons provide valuable constraints and encourage further investigations on both experimental and theoretical side.Comment: 12 pages, 7 figure

    Identical pion intensity interferometry at

    No full text
    High-statistics ππ\pi ^-\pi ^- and π+π+\pi ^+\pi ^+ femtoscopy data are presented for Au + Au collisions at sNN=2.4 GeV\sqrt{s_\mathrm{NN}} = 2.4~\hbox {GeV}, measured with HADES at SIS18/GSI. The experimental correlation functions allow the determination of the space-time extent of the corresponding emission sources via a comparison to models. The emission source, parametrized as three-dimensional Gaussian distribution, is studied in dependence on pair transverse momentum, azimuthal emission angle with respect to the reaction plane, collision centrality and beam energy. For all centralities and transverse momenta, a geometrical distribution of ellipsoidal shape is found in the plane perpendicular to the beam direction with the larger extension perpendicular to the reaction plane. For large transverse momenta, the corresponding eccentricity approaches the initial eccentricity. The eccentricity is smallest for most central collisions, where the shape is almost circular. The magnitude of the tilt angle of the emission ellipsoid in the reaction plane decreases with increasing centrality and increasing transverse momentum. All source radii increase with centrality, largely exhibiting a linear rise with the cube root of the number of participants. A substantial charge-sign difference of the source radii is found, appearing most pronounced at low transverse momentum. The extracted source parameters are consistent with the extrapolation of their energy dependence down from higher energies
    corecore