739 research outputs found

    Impedance modelling and parametric sensitivity of a VSC-HVDC system: New insights on resonances and interactions

    Get PDF
    Pervasiveness of power converters in the electric power system is expected in the future. Such large penetration will change the current power system dynamics leading to uncertain, unexpected, and potentially critical responses. This paper investigates the stability and resonance of a VSC-HVDC (Voltage Source Converter High Voltage Direct Current) link within an AC grid, whilst providing insights into resonances having a role on the grid. This is studied through the impedance-based modelling of the entire system (AC and DC grids), including controls of converters. Additionally, the impact of the different parameters of the hybrid AC-DC power system such as control systems and grid components on the system dynamics and stability is investigated. From this study, the impact of the system components and the controls of the converter on overall resonance response and stability is shown, including potential undesired sub-synchronous and harmonic resonances due to AC-DC system interactions. The analytical impedance-based models developed and obtained is validated through time-domain simulations, the physical model of the whole system is built in Simscape™ Power Systems™ and control systems in MATLAB/Simulink® (R2017b). This has demonstrated the validity of the model to deal with and detect such dynamics. © 2018 by the authors. Licensee MDPI, Basel, Switzerland.Peer ReviewedPostprint (published version

    Active and reactive power control of a PV generator for grid code compliance

    Get PDF
    As new grid codes have been created to permit the integration of large scale photovoltaic power plants into the transmission system, the enhancement of the local control of the photovoltaic (PV) generators is necessary. Thus, the objective of this paper is to present a local controller of active and reactive power to comply the new requirements asked by the transmission system operators despite the variation of ambient conditions without using extra devices. For this purpose, the control considers the instantaneous capability curves of the PV generator which vary due to the change of solar irradiance, temperature, dc voltage and modulation index. To validate the control, the PV generator is modeled in DIgSILENT PowerFactory® and tested under different ambient conditions. The results show that the control developed can modify the active and reactive power delivered to the desired value at different solar irradiance and temperature

    Control of a utility connected microgrid

    Get PDF
    This paper describes the control algorithm of a utility connected microgrid, based on independent control of active and reactive power (PQ control) and working in centralized operation mode. The microgrid under investigation is composed of three configurable units: a generation unit, a storage unit and a load. These units are interfaced with the microgrid through a Voltage Source Converter (VSC) and are controlled by the nodes of the communication system by means of IEC 61850. A set of tests have been conducted to evaluate the microgrid behavior.Postprint (published version

    Analysis of the blackout risk reduction when segmenting large power systems using lines with controllable power flow

    Get PDF
    Large electrical transmission networks are susceptible to undergo very large blackouts due to cascading failures, with a very large associated economical cost. In this work we propose segmenting large power grids using controllable lines, such as high-voltage direct-current lines, to reduce the risk of blackouts. The method consists in modifying the power flowing through the lines interconnecting different zones during cascading failures in order to minimize the load shed. As a result, the segmented grids have a substantially lower risk of blackouts than the original network, with reductions up to 60% in some cases. The control method is shown to be specially efficient in reducing blackouts affecting more than one zone.DG and PC acknowledge funding from project PACSS RTI2018-093732-B-C22 and APASOS PID2021-122256NB-C22 of the MCIN/AEI/10.13039/501100011033/ and by EU through FEDER funds (A way to make Europe), from the Maria de Maeztu program MDM-2017-0711 of the MCIN/AEI/10.13039/501100011033/, and also from the European Union's Horizon 2020 research and innovation programme (Grant Agreement No. 957852, VPP4Islands). B.A.C. and J.M.R.-B. acknowledge access to Uranus, a supercomputer cluster located at Universidad Carlos III de Madrid (Spain) funded jointly by EU FEDER funds and by the Spanish Government via the National Research Project Nos. UNC313-4E-2361, ENE2009-12213-C03-03, ENE2012-33219, and ENE2012-31753. OGB was supported in part by FEDER/Ministerio de Ciencia, Innovacion y Universidades - Agencia Estatal de InvestigaciĂłn, Project RTI2018-095429-B-I00 and in part by FI-AGAUR Research Fellowship Program, Generalitat de Catalunya. The work of OGB is supported by the ICREA Academia program

    Control design of Modular Multilevel Converters in normal and AC fault conditions for HVDC grids

    Get PDF
    This paper describes a control design strategy of Modular Multilevel Converters (MMC) for High Voltage Direct Current (HVDC) applications to operate during normal and AC fault conditions. First, a steady state analysis of the converter is performed to identify the uses of the current components within the control strategy. Based on the initial stationary study, a complete converter control structure is proposed, which enables full control of the MMC internal energy during normal and AC fault conditions. A detailed design procedure is included for the current and energy regulators, in order to be able to ensure a dynamic response under any grid condition. Finally, theoretical developments are validated through simulation results by means of a detailed model in normal operation and during an AC voltage sag

    The course of posterior antebrachial cutaneous nerve: Anatomical and sonographic study with a clinical implication

    Get PDF
    The course of the posterior antebrachial cutaneous nerve (PACN) was studied via ultrasound (US) and dissection. The aim of this study was to reveal the anatomical relationships of PACN with the surrounding structures along its pathway to identify possible critical points of compression. Nineteen cryopreserved cadaver body donor upper extremities were explored via US and further dissected. During US exploration, two reference points, in relation with the compression of the nerve, were marked using dye injection: (1) the point where the RN pierces the lateral intermuscular septum (LIMS) and (2) the point where the PACN pierces the deep fascia. Anatomical measurements referred to the lateral epicondyle (LE) were taken at these two points. Dissection confirmed the correct site of US-guided dye injection at 100% of points where the RN crossed the LIMS (10.5 cm from the LE) and was correctly injected at 74% of points where the PACN pierce the deep fascia (7.4 cm from the LE). There were variations in the course of the PACN, but it always divided from the RN as an only branch. Either ran close and parallel to the LIMS until the RN crossed the LIMS (84%) or clearly separated from the RN, 1 cm before it crossed the LIMS (16%). In 21% of cases, the PACN crossed the LIMS with the RN, while in the rest of the cases it always followed in the posterior compartment. A close relationship between PACN and LIMS, as well as triceps brachii muscle and deep fascia was observed. The US and anatomical study showed that the course of PACN maintains a close relationship with the LIMS and other connective tissues (such as the fascia and subcutaneous tissue) to be present in its pathology and treatment
    • …
    corecore