40 research outputs found

    Preliminary study of the Gravimetric Local Geoid Model in Jordan: case study (GeoJordan Model)

    Get PDF
    Recently, there has been an increased interest in studying and defining the Local and Regional Geoid Model worldwide, due to its importance in geodetic and geophysics applications.The use of the Global Positioning System (GPS) is internationally growing, yet the lack of a Geoid Model for Jordan has limited the use of GPS for the geodetic applications in the country. This work aims to present the preliminary results that we propose for «The Gravimetric Jordanian Geoid Model (GeoJordan)». The model is created using gravimetric data and the GRAVSOFT program. The model is validated using GPS and precise level measurements in the Amman area. Moreover, we present a comparison using the Global Geopotential Model OSU91A and the EGM96 Model and the results showed great discrepancies. We also present the approach used to obtain the orthometric height from GPS ellipsoidal height measurements. We found that the error margin obtained in this work of the GeoJordan after fitting the data with GPS/leveling measurements is about (10 cm) in the tested area whereas the standard error of the created model is about (40 cm)

    Sentiment analysis in English texts

    Get PDF
    The growing popularity of social media sites has generated a massive amount of data that attracted researchers, decision-makers, and companies to investigate people’s opinions and thoughts in various fields. Sentiment analysis is considered an emerging topic recently. Decision-makers, companies, and service providers as well-considered sentiment analysis as a valuable tool for improvement. This research paper aims to obtain a dataset of tweets and apply different machine learning algorithms to analyze and classify texts. This research paper explored text classification accuracy while using different classifiers for classifying balanced and unbalanced datasets. It was found that the performance of different classifiers varied depending on the size of the dataset. The results also revealed that the Naive Byes and ID3 gave a better accuracy level than other classifiers, and the performance was better with the balanced datasets. The different classifiers (K-NN, Decision Tree, Random Forest, and Random Tree) gave a better performance with the unbalanced datasets

    Supramolecular Nanostructure Formation of Coassembled Amyloid Inspired Peptides

    No full text
    Characterization of amyloid-like aggregates through converging approaches can yield deeper understanding of their complex self-assembly mechanisms and the nature of their strong mechanical stability, which may in turn contribute to the design of novel supramolecular peptide nano structures as functional materials. In this study, we investigated the coassembly kinetics of oppositely charged short amyloidinspired peptides (AlPs) into supramolecular nanostructures by using confocal fluorescence imaging of thioflavin T binding, turbidity assay and in situ small-angle X-ray scattering (SAXS) analysis. We showed that coassembly kinetics of the AIP nanostructures were consistent with nucleation-dependent amyloid-like aggregation, and aggregation behavior of the AlPs was affected by the initial monomer concentration and sonication. Moreover, SAXS analysis was performed to gain structural information on the size, shape, electron density, and internal organization of the coassembled AIP nanostructures. The scattering data of the coassembled AIP nanostructures were best fitted into to a combination of polydisperse core shell cylinder (PCSC) and decoupling flexible cylinder (FCPR) models, and the structural parameters were estimated based on the fitting results of the scattering data. The stability of the coassembled AIP nanostructures in both fiber organization and bulk viscoelastic properties was also revealed via temperature-dependent SAXS analysis and oscillatory rheology measurements, respectively.Wo

    Preliminary Study of the Gravimetric Local Geoid Model in Jordan:

    No full text
    Recently, there is an increased interest in studying and defining the Local and Regional Geoid Model worldwide, due to its importance in geodetic and geophysics applications. The use of the Global Positioning System (GPS) is internationally growing, yet the lack of any Geoid Model for Jordan has limited the use of GPS for geodetic applications. Therefore, this work aims to present the preliminary results that we propose for The Gravimetric Jordanian Geoid Model (GeoJordan). The model is created using gravimetric data and the GravSoft program. The validation of this model is done by using GPS measurements and precise leveling at Amman area. However, a comparison between the Global Geopotential Models OSU91A and EGM96 showed great discrepancies through the presented results. Also, presenting the approach used to obtain the orthometric height from GPS ellipsoidal height measurements. Nevertheless, the error margin; obtained in this initial study of the GeoJordan after fitting the data with GPS/leveling measurement; is about (10cm), in tested area whereas the standard error of the created model is about (40cm)

    Preliminary study of the Gravimetric Local Geoid Model in Jordan: case study (GeoJordan Model)

    No full text
    Recently, there has been an increased interest in studying and defining the Local and Regional Geoid Model worldwide, due to its importance in geodetic and geophysics applications.The use of the Global Positioning System (GPS) is internationally growing, yet the lack of a Geoid Model for Jordan has limited the use of GPS for the geodetic applications in the country. This work aims to present the preliminary results that we propose for «The Gravimetric Jordanian Geoid Model (GeoJordan)». The model is created using gravimetric data and the GRAVSOFT program. The model is validated using GPS and precise level measurements in the Amman area. Moreover, we present a comparison using the Global Geopotential Model OSU91A and the EGM96 Model and the results showed great discrepancies. We also present the approach used to obtain the orthometric height from GPS ellipsoidal height measurements. We found that the error margin obtained in this work of the GeoJordan after fitting the data with GPS/leveling measurements is about (10 cm) in the tested area whereas the standard error of the created model is about (40 cm)

    Structural and vibrational investigation of 1, 2-bis(3, 4-dimethoxyphenyl) ethane-1, 2-dione (Veratril): Experimental and theoretical studies

    No full text
    The molecular and crystal structures of 1,2-bis(3,4-dimethoxyphenyl)ethane- 1,2-dione (TMBZ = tetramethoxybenzil) were determined by a single-crystal X-ray diffraction, 1H NMR, and FT-IR spectroscopy. The compound TMBZ (C18H18O6, M r = 330.32) crystallized in the orthorhombic Fdd2 space group wherein: a = 39.145(4), b = 18.167(2), c = 4.3139(5) Å and ß = 90°, Z = 8. The packing of the molecules in the crystal lattice is stabilized by intermolecular C-H?O contacts in the herringbone arrangement. The molecular geometry and harmonic frequencies of TMBZ in the ground state were calculated utilizing density functional (B3LYP) method with the 6-311++G(d, p)-basis set. The density functional theory optimized the geometric structure, and vibrational wave numbers of TMBZ in gas phase were compared with the experimental data. A complete assignment of the fundamentals was proposed based on the total energy distribution calculation. © 2008 Springer Science+Business Media, LLC.Acknowledgments We gratefully acknowledge the support for this work by the Turkish Scientific and Technical Research Council (Grant no. TBAG-2450(104T060)). We would like to thank the reviewers for the thoughtful and thorough review

    Structural and vibrational study of maprotiline

    No full text
    29th European Congress on Molecular Spectroscopy -- AUG 31-SEP 05, 2008 -- Opatija, CROATIAWOS: 000266574200051Maprotiline (N-methyl-9,10-ethanoanthracene-9(10H)-propanamine) is a tetra cyclic antidepressant. It is a highly selective inhibitor of norepinephrine reuptake. The solid and Solution in CCl4 and methanol infrared spectra of maprotiline were recorded. The fully optimized equilibrium structure of maprotiline was obtained from DFT calculations by using the B3LYP functional in combination with 6-31G and 6-311G(d,p) basis sets. The results of harmonic and anharmonic frequency calculations on maprotiline were presented. The vibrational spectra were interpreted, with the aid of normal coordinate analysis based on a scaled quantum mechanical (SQM) force field. Vibrational assignment of all the fundamentals was made using the total energy distribution (TED). The possible interaction between maprotiline and neurotransmitter serotonin (5-HT) were investigated. (C) 2008 Elsevier B.V. All rights reserved.Ruder Boskov Inst, Univ Zagreb, Croatian Acad Sci & Arts, Univ Rijeka, Croatian Phys Soc, Croatian Chem So

    Centimeter precision geoid model for Jeddah region (Saudi Arabia)

    No full text
    In 2014, the Jeddah Municipality made a call for an estimate of a centimetric precision geoid model to be used for engineering and surveying applications, because the regional geoid model available at that time did not reach a sufficient precision. Aproject was set up to this end and dedicated sets of gravity and Global Positioning System (GPS)/levelling data were acquired in the framework of this project. In this paper, a thorough analysis of these newly acquired data and of the last available Global Gravity Field Models (GGMs) has been done in order to obtain a geoid undulation estimate with the prescribed precision. In the framework of the Remove-Compute-Restore (RCR) approach, the collocation method was used to obtain the height anomaly estimation that was then converted to geoid undulation. The remove and restore steps of the RCR approach were based on GGMs, derived from the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) and Gravity Recovery and Climate Experiment (GRACE) dedicated gravity satellite missions, which were used to improve the long wavelength components of the Earth's gravity field. Furthermore, two different quasi-geoid collocation estimates were computed, based on gravity data only and on gravity plus GPS/levelling data (the so-called hybrid estimate). The best solutions were obtained with the hybrid geoid estimate. This was tested by comparison with an independent set of GPS/levelling geoid undulations that were not included in the computed solutions. By these tests, the precision of the hybrid geoid is estimated to be 3.7 cm. This precision proved to be better, by a factor of two, than the corresponding one estimated from the pure gravimetric geoid. This project has been also useful to verify the importance and reliability of GGMs developed from the last satellite gravity missions (GOCE and GRACE) that have significantly improved our knowledge of the long wavelength components of the Earth's gravity field, especially in areas with poor coverage of terrestrial gravity data. In fact, the geoid models based on satellite-only GGMs proved to have a better performance, despite the lower spatial resolution with respect to high-resolution models (i.e., Earth Gravitational Model 2008 (EGM2008))
    corecore