3,986 research outputs found
A conceptual analytics model for an outcome-driven quality management framework as part of professional healthcare education
BACKGROUND: Preparing the future health care professional workforce in a changing world is a significant undertaking. Educators and other decision makers look to evidence-based knowledge to improve quality of education. Analytics, the use of data to generate insights and support decisions, have been applied successfully across numerous application domains. Health care professional education is one area where great potential is yet to be realized. Previous research of Academic and Learning analytics has mainly focused on technical issues. The focus of this study relates to its practical implementation in the setting of health care education. OBJECTIVE: The aim of this study is to create a conceptual model for a deeper understanding of the synthesizing process, and transforming data into information to support educators’ decision making. METHODS: A deductive case study approach was applied to develop the conceptual model. RESULTS: The analytics loop works both in theory and in practice. The conceptual model encompasses the underlying data, the quality indicators, and decision support for educators. CONCLUSIONS: The model illustrates how a theory can be applied to a traditional data-driven analytics approach, and alongside the context- or need-driven analytics approach
Optimal operating conditions and characteristics of acetone/CaF_2 detector for inverse photoemission spectroscopy
Performance and characteristics of a band-pass photon detector using acetone
gas and CaF_2 window (acetone/CaF_2) have been studied and compared with an
ethanol/MgF_2 detector. The optimal operating conditions are found to be 4 mbar
acetone pressure and 745+/-20 V anode voltage. The count rate obtained by us is
about a factor of 3 higher than what has been reported earlier for the acetone
detector. Unlike other gas filled detectors, this detector works in the
proportional region with very small dead time (4 micro sec). A detector
band-pass of 0.48+/-0.01 eV FWHM is obtained.Comment: Review of Scientific Instruments 76, 066102 (2005
Access and barriers to immunization in West Bengal, India: quality matters
While many studies attempted to evaluate performance of immunization programmes in developing countries by full coverage, there is a growing awareness about the limitations of such evaluation, irrespective of the overall quality of performance. Availability of human resources, equipment, supporting drugs, and training of personnel are considered to be crucial indicators of the quality of immunization programme. Also, maintenance of time schedule has been considered crucial in the context of the quality of immunization. In addition to overall coverage of vaccination, the coverage of immunization given at right time (month-specific) is to be considered with utmost importance. In this paper, District Level Household and Facility Survey-3 (DLHS-3) 2007-2008 data have been used in exploring the quality of immunization in terms of month-specific vaccine coverage and barriers to access in West Bengal, India. In West Bengal, the month-specific coverage stands badly below 20% but the simple non-month-specific coverage is as high as 75%. Among the demand-side factors, birthplace of the child and religion of the household heads came out as significant predictors while, from the supply-side, availability of male health workers and equipment at the subcentres, were the important determinants for month-specific vaccine coverage. Hence, there should be a vigorous attempt to make more focused planning, keeping in mind the nature of the barriers, for improvement of the month-specific coverage in West Bengal.ICDDR,B; DFI
Influenza virus morphogenesis and budding.
Influenza viruses are enveloped, negative stranded, segmented RNA viruses belonging to Orthomyxoviridae family. Each virion consists of three major sub-viral components, namely (i) a viral envelope decorated with three transmembrane proteins hemagglutinin (HA), neuraminidase (NA) and M2, (ii) an intermediate layer of matrix protein (M1), and (iii) an innermost helical viral ribonucleocapsid [vRNP] core formed by nucleoprotein (NP) and negative strand viral RNA (vRNA). Since complete virus particles are not found inside the cell, the processes of assembly, morphogenesis, budding and release of progeny virus particles at the plasma membrane of the infected cells are critically important for the production of infectious virions and pathogenesis of influenza viruses as well. Morphogenesis and budding require that all virus components must be brought to the budding site which is the apical plasma membrane in polarized epithelial cells whether in vitro cultured cells or in vivo infected animals. HA and NA forming the outer spikes on the viral envelope possess apical sorting signals and use exocytic pathways and lipid rafts for cell surface transport and apical sorting. NP also has apical determinant(s) and is probably transported to the apical budding site similarly via lipid rafts and/or through cortical actin microfilaments. M1 binds the NP and the exposed RNAs of vRNPs, as well as to the cytoplasmic tails (CT) and transmembrane (TM) domains of HA, NA and M2, and is likely brought to the budding site on the piggy-back of vRNP and transmembrane proteins. Budding processes involve bud initiation, bud growth and bud release. The presence of lipid rafts and assembly of viral components at the budding site can cause asymmetry of lipid bilayers and outward membrane bending leading to bud initiation and bud growth. Bud release requires fusion of the apposing viral and cellular membranes and scission of the virus buds from the infected cellular membrane. The processes involved in bud initiation, bud growth and bud scission/release require involvement both viral and host components and can affect bud closing and virus release in both positive and negative ways. Among the viral components, M1, M2 and NA play important roles in bud release and M1, M2 and NA mutations all affect the morphology of buds and released viruses. Disassembly of host cortical actin microfilaments at the pinching-off site appears to facilitate bud fission and release. Bud scission is energy dependent and only a small fraction of virus buds present on the cell surface is released. Discontinuity of M1 layer underneath the lipid bilayer, absence of outer membrane spikes, absence of lipid rafts in the lipid bilayer, as well as possible presence of M2 and disassembly of cortical actin microfilaments at the pinching-off site appear to facilitate bud fission and bud release. We provide our current understanding of these important processes leading to the production of infectious influenza virus particles
Influence of Ni doping on the electronic structure of Ni_2MnGa
The modifications in the electronic structure of Ni_{2+x}Mn_{1-x}Ga by Ni
doping have been studied using full potential linearized augmented plane wave
method and ultra-violet photoemission spectroscopy. Ni 3d related electron
states appear due to formation of Ni clusters. We show the possibility of
changing the minority-spin DOS with Ni doping, while the majority-spin DOS
remains almost unchanged. The total magnetic moment decreases with excess Ni.
The total energy calculations corroborate the experimentally reported changes
in the Curie temperature and the martensitic transition temperature with x.Comment: 4 pages, 4 figures, accepted in Phys. Rev.
Astrometric Monitoring of the HR 8799 Planets: Orbit Constraints from Self-Consistent Measurements
We present new astrometric measurements from our ongoing monitoring campaign
of the HR 8799 directly imaged planetary system. These new data points were
obtained with NIRC2 on the W.M. Keck II 10 meter telescope between 2009 and
2014. In addition, we present updated astrometry from previously published
observations in 2007 and 2008. All data were reduced using the SOSIE algorithm,
which accounts for systematic biases present in previously published
observations. This allows us to construct a self-consistent data set derived
entirely from NIRC2 data alone. From this dataset, we detect acceleration for
two of the planets (HR 8799b and e) at 3. We also assess possible
orbital parameters for each of the four planets independently. We find no
statistically significant difference in the allowed inclinations of the
planets. Fitting the astrometry while forcing coplanarity also returns
consistent to within 1 of the best fit values, suggesting that if
inclination offsets of 20 are present, they are not detectable
with current data. Our orbital fits also favor low eccentricities, consistent
with predictions from dynamical modeling. We also find period distributions
consistent to within 1 with a 1:2:4:8 resonance between all planets.
This analysis demonstrates the importance of minimizing astrometric systematics
when fitting for solutions to highly undersampled orbits.Comment: 18 pages, 11 figures. Accepted for publication in A
Phase-Dependent Properties of Extrasolar Planet Atmospheres
Recently the Spitzer Space Telescope observed the transiting extrasolar
planets, TrES-1 and HD209458b. These observations have provided the first
estimates of the day side thermal flux from two extrasolar planets orbiting
Sun-like stars. In this paper, synthetic spectra from atmospheric models are
compared to these observations. The day-night temperature difference is
explored and phase-dependent flux densities are predicted for both planets. For
HD209458b and TrES-1, models with significant day-to-night energy
redistribution are required to reproduce the observations. However, the
observational error bars are large and a range of models remains viable.Comment: 8 pages, 7 figures, accepted for publication in the Astrophysical
Journa
- …