8 research outputs found

    The Effect of High Dose Melatonin on Cardiac Ischemia-reperfusion Injury

    Get PDF
    Purpose: Melatonin, the most potent scavenger of toxic free radicals, has been found to be effective in protecting against pathological states due to the release of reactive oxygen species. This study was performed to establish the effect of high dose melatonin on protection against ischemia-reperfusion (I/R) injury in rat hearts. Materials and Methods: Forty male Sprague-Dawley rats were used in this study. They were separated into four groups of ten rats each. A left coronary artery occlusion was induced in the rats by ligating the artery for 20 minutes and then releasing the ligation (reperfusion) afterwards. The control group was Group A. Group B was subjected to myocardial ischemia-reperfusion without any treatment, while Group C underwent myocardial ischemia-reperfusion with a melatonin treatment before the ischemia. Group D was subjected to myocardial ischemia-reperfusion with a melatonin treatment before the reperfusion. After 20 minutes of reperfusion, blood samples were obtained from each group for biochemical studies, and the animals were sacrificed for histological and, immunohistochemical examinations of the myocardial tissue. Results: We found that the cardiac troponin T(cTn-T) levels were significantly increased in Group B when all groups were compared. In the Group C rats treated with melatonin, the cTn-T values were significantly lower than those in Groups B and D. In addition, malondialdehyde (MDA) and antioxidant enzymes including, superoxide dismutase (SOD) and myeloperoxidase (MPO) were lower than those in Group B in the melatonin treated groups. The differences were statistically significant (p < 0.05). Histopathologic and immunohistopathologic studies also supported the effectiveness of melatonin. Conclusion: Our study suggests that high dose melatonin, appears to offer protection against cardiac ischemia-reperfusion injuries in rats by scavenging the free radicals and could have a potential clinical use in the management of myocardial ischemia.PURPOSE:Melatonin, the most potent scavenger of toxic free radicals, has been found to be effective in protecting against pathological states due to the release of reactive oxygen species. This study was performed to establish the effect of high dose melatonin on protection against ischemia- reperfusion (I/R) injury in rat hearts.MATERIALS AND METHODS:Forty male Sprague-Dawley rats were used in this study. They were separated into four groups of ten rats each. A left coronary artery occlusion was induced in the rats by ligating the artery for 20 minutes and then releasing the ligation (reperfusion) afterwards. The control group was Group A. Group B was subjected to myocardial ischemia-reperfusion without any treatment, while Group C underwent myocardial ischemia-reperfusion with a melatonin treatment before the ischemia. Group D was subjected to myocardial ischemia-reperfusion with a melatonin treatment before the reperfusion. After 20 minutes of reperfusion, blood samples were obtained from each group for biochemical studies, and the animals were sacrificed for histological and, immunohistochemical examinations of the myocardial tissue.RESULTS:We found that the cardiac troponin T(cTn-T) levels were significantly increased in Group B when all groups were compared. In the Group C rats treated with melatonin, the cTn-T values were significantly lower than those in Groups B and D. In addition, malondialdehyde (MDA) and antioxidant enzymes including, superoxide dismutase (SOD) and myeloperoxidase (MPO) were lower than those in Group B in the melatonin treated groups. The differences were statistically significant (p < 0.05). Histopathologic and immunohistopathologic studies also supported the effectiveness of melatonin.CONCLUSION:Our study suggests that high dose melatonin, appears to offer protection against cardiac ischemia-reperfusion injuries in rats by scavenging the free radicals and could have a potential clinical use in the management of myocardial ischemia

    The Effect of High Dose Melatonin on Cardiac Ischemia-reperfusion Injury

    Get PDF
    Purpose: Melatonin, the most potent scavenger of toxic free radicals, has been found to be effective in protecting against pathological states due to the release of reactive oxygen species. This study was performed to establish the effect of high dose melatonin on protection against ischemia-reperfusion (I/R) injury in rat hearts. Materials and Methods: Forty male Sprague-Dawley rats were used in this study. They were separated into four groups of ten rats each. A left coronary artery occlusion was induced in the rats by ligating the artery for 20 minutes and then releasing the ligation (reperfusion) afterwards. The control group was Group A. Group B was subjected to myocardial ischemia-reperfusion without any treatment, while Group C underwent myocardial ischemia-reperfusion with a melatonin treatment before the ischemia. Group D was subjected to myocardial ischemia-reperfusion with a melatonin treatment before the reperfusion. After 20 minutes of reperfusion, blood samples were obtained from each group for biochemical studies, and the animals were sacrificed for histological and, immunohistochemical examinations of the myocardial tissue. Results: We found that the cardiac troponin T(cTn-T) levels were significantly increased in Group B when all groups were compared. In the Group C rats treated with melatonin, the cTn-T values were significantly lower than those in Groups B and D. In addition, malondialdehyde (MDA) and antioxidant enzymes including, superoxide dismutase (SOD) and myeloperoxidase (MPO) were lower than those in Group B in the melatonin treated groups. The differences were statistically significant (p < 0.05). Histopathologic and immunohistopathologic studies also supported the effectiveness of melatonin. Conclusion: Our study suggests that high dose melatonin, appears to offer protection against cardiac ischemia-reperfusion injuries in rats by scavenging the free radicals and could have a potential clinical use in the management of myocardial ischemia.PURPOSE:Melatonin, the most potent scavenger of toxic free radicals, has been found to be effective in protecting against pathological states due to the release of reactive oxygen species. This study was performed to establish the effect of high dose melatonin on protection against ischemia- reperfusion (I/R) injury in rat hearts.MATERIALS AND METHODS:Forty male Sprague-Dawley rats were used in this study. They were separated into four groups of ten rats each. A left coronary artery occlusion was induced in the rats by ligating the artery for 20 minutes and then releasing the ligation (reperfusion) afterwards. The control group was Group A. Group B was subjected to myocardial ischemia-reperfusion without any treatment, while Group C underwent myocardial ischemia-reperfusion with a melatonin treatment before the ischemia. Group D was subjected to myocardial ischemia-reperfusion with a melatonin treatment before the reperfusion. After 20 minutes of reperfusion, blood samples were obtained from each group for biochemical studies, and the animals were sacrificed for histological and, immunohistochemical examinations of the myocardial tissue.RESULTS:We found that the cardiac troponin T(cTn-T) levels were significantly increased in Group B when all groups were compared. In the Group C rats treated with melatonin, the cTn-T values were significantly lower than those in Groups B and D. In addition, malondialdehyde (MDA) and antioxidant enzymes including, superoxide dismutase (SOD) and myeloperoxidase (MPO) were lower than those in Group B in the melatonin treated groups. The differences were statistically significant (p < 0.05). Histopathologic and immunohistopathologic studies also supported the effectiveness of melatonin.CONCLUSION:Our study suggests that high dose melatonin, appears to offer protection against cardiac ischemia-reperfusion injuries in rats by scavenging the free radicals and could have a potential clinical use in the management of myocardial ischemia

    An Unusual Location of Neuroendocrine Tumour: Primary Hepatic Origin

    No full text
    Although neuroendocrine tumours (NETs) of primary hepatic origin are extremely rare, most of NETs present with liver metastasis. When a NET is found in the liver, it must be treated to exclude metastasis from extrahepatic primary sites. The patient was a 38-year-old female. Abdominal ultrasound showed an 8 cm tumour in liver during a routine examination. Liver biopsy was done. The tumour was first considered a metastatic hepatic tumour on histopathological examination. No clues to the origin of a primary tumour were found. Upper and lower endoscopy of the GI tract and chest CT were performed to search for a primary tumour and were negative for any tumour. One month later, more extensive areas of the tumour were seen on histopathological examination of second liver biopsy with the same morphologic characteristics as the first biopsy. Immunohistochemically, there was positive staining for synaptophysin, CD 56, and S-100 in the tumour cells. These findings suggested the diagnosis of NET. The diagnosis of primary liver NET was considered in a multidisciplinary meeting. Then, left hepatectomy was performed. The final pathologic diagnosis of the tumour in the resected liver specimen was Grade II NET. The patient was doing well at postoperative 28-month follow-up

    An Unusual Location of Neuroendocrine Tumour: Primary Hepatic Origin

    No full text
    Although neuroendocrine tumours (NETs) of primary hepatic origin are extremely rare, most of NETs present with liver metastasis. When a NET is found in the liver, it must be treated to exclude metastasis from extrahepatic primary sites. The patient was a 38-year-old female. Abdominal ultrasound showed an 8 cm tumour in liver during a routine examination. Liver biopsy was done. The tumour was first considered a metastatic hepatic tumour on histopathological examination. No clues to the origin of a primary tumour were found. Upper and lower endoscopy of the GI tract and chest CT were performed to search for a primary tumour and were negative for any tumour. One month later, more extensive areas of the tumour were seen on histopathological examination of second liver biopsy with the same morphologic characteristics as the first biopsy. Immunohistochemically, there was positive staining for synaptophysin, CD 56, and S-100 in the tumour cells. These findings suggested the diagnosis of NET. The diagnosis of primary liver NET was considered in a multidisciplinary meeting. Then, left hepatectomy was performed. The final pathologic diagnosis of the tumour in the resected liver specimen was Grade II NET. The patient was doing well at postoperative 28-month follow-up
    corecore