4,623 research outputs found
A-infinity algebra of an elliptic curve and Eisenstein series
We compute explicitly the A-infinity structure on the Ext-algebra of the
collection , where is a line bundle of degree 1 on an
elliptic curve . The answer involves higher derivatives of Eisenstein
series.Comment: 13 pages, 3 figures; v3: added remark on the limit at the cus
A central limit theorem for the zeroes of the zeta function
On the assumption of the Riemann hypothesis, we generalize a central limit
theorem of Fujii regarding the number of zeroes of Riemann's zeta function that
lie in a mesoscopic interval. The result mirrors results of Soshnikov and
others in random matrix theory. In an appendix we put forward some general
theorems regarding our knowledge of the zeta zeroes in the mesoscopic regime.Comment: 22 pages. Incorporates referees suggestions. Contains minor
corrections to published versio
The Worldwide Change in the Behavior of Interest Rates and Prices in 1914
This paper evaluates the role of the destruction of the gold standard and the founding of the Federal Reserve, both of which occurred in 1914, in contributing to observed changes in the behavior of interest rates and prices after 1914. The paper presents a model of policy coordination in which the introduction of the Fed stabilizes interest rates, even if the gold standard remains intact, and it offers empirical evidence that the dismantling of the gold standard did not play a crucial role in precipitating the changes in interest rate behavior.
Painleve versus Fuchs
The sigma form of the Painlev{\'e} VI equation contains four arbitrary
parameters and generically the solutions can be said to be genuinely
``nonlinear'' because they do not satisfy linear differential equations of
finite order. However, when there are certain restrictions on the four
parameters there exist one parameter families of solutions which do satisfy
(Fuchsian) differential equations of finite order. We here study this phenomena
of Fuchsian solutions to the Painlev{\'e} equation with a focus on the
particular PVI equation which is satisfied by the diagonal correlation function
C(N,N) of the Ising model. We obtain Fuchsian equations of order for
C(N,N) and show that the equation for C(N,N) is equivalent to the
symmetric power of the equation for the elliptic integral .
We show that these Fuchsian equations correspond to rational algebraic curves
with an additional Riccati structure and we show that the Malmquist Hamiltonian
variables are rational functions in complete elliptic integrals. Fuchsian
equations for off diagonal correlations are given which extend our
considerations to discrete generalizations of Painlev{\'e}.Comment: 18 pages, Dedicated to the centenary of the publication of the
Painleve VI equation in the Comptes Rendus de l'Academie des Sciences de
Paris by Richard Fuchs in 190
Mg II Absorption Systems in SDSS QSO Spectra
We present the results of a MgII absorption-line survey using QSO spectra
from the SDSS EDR. Over 1,300 doublets with rest equivalent widths greater than
0.3\AA and redshifts were identified and measured. We
find that the rest equivalent width ()
distribution is described very well by an exponential function , with
and \AA. Previously reported power law
fits drastically over-predict the number of strong lines. Extrapolating our
exponential fit under-predicts the number of \AA systems,
indicating a transition in near \AA. A combination of
two exponentials reproduces the observed distribution well, suggesting that
MgII absorbers are the superposition of at least two physically distinct
populations of absorbing clouds. We also derive a new redshift parameterization
for the number density of \AA lines:
and \AA. We find that the distribution steepens with decreasing redshift,
with decreasing from \AA at to \AA at
. The incidence of moderately strong MgII lines does not
show evidence for evolution with redshift. However, lines stronger than
\AA show a decrease relative to the no-evolution prediction with
decreasing redshift for . The evolution is stronger for
increasingly stronger lines. Since in saturated absorption lines is an
indicator of the velocity spread of the absorbing clouds, we interpret this as
an evolution in the kinematic properties of galaxies from moderate to low z.Comment: 50 pages, 26 figures, accepted for publication in Ap
Existence and Optimality of -Non-adjacent Forms with an Algebraic Integer Base
We consider digital expansions in lattices with endomorphisms acting as base.
We focus on the -non-adjacent form (-NAF), where each block of
consecutive digits contains at most one non-zero digit. We prove that for
sufficiently large and an expanding endomorphism, there is a suitable digit
set such that each lattice element has an expansion as a -NAF.
If the eigenvalues of the endomorphism are large enough and is
sufficiently large, then the -NAF is shown to minimise the weight among all
possible expansions of the same lattice element using the same digit system
High cooperativity coupling of electron-spin ensembles to superconducting cavities
Electron spins in solids are promising candidates for quantum memories for
superconducting qubits because they can have long coherence times, large
collective couplings, and many quantum bits can be encoded into the spin-waves
of a single ensemble. We demonstrate the coupling of electron spin ensembles to
a superconducting transmission-line resonator at coupling strengths greatly
exceeding the cavity decay rate and comparable to spin linewidth. We also use
the enhanced coupling afforded by the small cross-section of the transmission
line to perform broadband spectroscopy of ruby at millikelvin temperatures at
low powers. In addition, we observe hyperfine structure in diamond P1 centers
and time domain saturation-relaxation of the spins.Comment: 4pgs, 4 figure
Magnetic properties of the low-dimensional spin-1/2 magnet \alpha-Cu_2As_2O_7
In this work we study the interplay between the crystal structure and
magnetism of the pyroarsenate \alpha-Cu_2As_2O_7 by means of magnetization,
heat capacity, electron spin resonance and nuclear magnetic resonance
measurements as well as density functional theory (DFT) calculations and
quantum Monte Carlo (QMC) simulations. The data reveal that the magnetic Cu-O
chains in the crystal structure represent a realization of a quasi-one
dimensional (1D) coupled alternating spin-1/2 Heisenberg chain model with
relevant pathways through non-magnetic AsO_4 tetrahedra. Owing to residual 3D
interactions antiferromagnetic long range ordering at T_N\simeq10K takes place.
Application of external magnetic field B along the magnetically easy axis
induces the transition to a spin-flop phase at B_{SF}~1.7T (2K). The
experimental data suggest that substantial quantum spin fluctuations take place
at low magnetic fields in the ordered state. DFT calculations confirm the
quasi-one-dimensional nature of the spin lattice, with the leading coupling J_1
within the structural dimers. QMC fits to the magnetic susceptibility evaluate
J_1=164K, the weaker intrachain coupling J'_1/J_1 = 0.55, and the effective
interchain coupling J_{ic1}/J_1 = 0.20.Comment: Accepted for publication in Physical Review
Highly asymmetric magnetic domain wall propagation due to coupling to a periodic pinning potential
Magneto-optical microscopy and magnetometry have been used to study
19 magnetization reversal in an ultrathin magnetically soft [Pt/Co]2 ferromagnetic film
20 coupled to an array of magnetically harder [Co/Pt]4 nanodots via a predominantly
21 dipolar interaction across a 3 nm Pt spacer. This interaction generates a spatially
22 periodic pinning potential for domain walls propagating through the continuous
23 magnetic film. When reversing the applied field with respect to the static nanodot
24 array magnetization orientation, strong asymmetries in the wall velocity and switching
25 fields are observed. Asymmetric switching fields mean that the hysteresis of the film is
26 characterized by a large bias field of dipolar origin which is linked to the wall velocity
27 asymmetry. This latter asymmetry, though large at low fields, vanishes at high fields
28 where the domains become round and compact. A field-polarity-controlled transition
29 from dendritic to compact faceted domain structures is also seen at low field and a
30 model is proposed to interpret the transition
Particle production and equilibrium properties within a new hadron transport approach for heavy-ion collisions
The microscopic description of heavy-ion reactions at low beam energies is
achieved within hadronic transport approaches. In this article a new approach
SMASH (Simulating Many Accelerated Strongly-interacting Hadrons) is introduced
and applied to study the production of non-strange particles in heavy-ion
reactions at GeV. First, the model is described including
details about the collision criterion, the initial conditions and the resonance
formation and decays. To validate the approach, equilibrium properties such as
detailed balance are presented and the results are compared to experimental
data for elementary cross sections. Finally results for pion and proton
production in C+C and Au+Au collisions is confronted with HADES and FOPI data.
Predictions for particle production in collisions are made.Comment: 30 pages, 30 figures, replaced with published version; only minor
change
- …