13,984 research outputs found
SUSY Soft Breaking Terms from String Scenarios
The general SUSY soft breaking terms for a large class of phenomenologically
relevant string scenarios (symmetric orbifolds) are given. They show a certain
lack of universality, but not dangerous for flavor changing neutral currents.
To get more quantitative results a specific SUSY breaking mechanism has to be
considered, namely gaugino condensation in the hidden sector. Then, it turns
out that squark and slepton masses tend to be much larger than scalar masses
(), which probably is a quite general fact. Experimental
bounds and the requirement of a successful electroweak breaking without fine
tuning impose further restrictions on the soft breaking terms. As a consequence
the gluino and chargino masses should be quite close to their present
experimental limits, whereas squark and slepton masses should be much higher (>
1 TeV).Comment: (Talk presented at the SUSY-93 Conference, Boston, March 29 - April
2, 1993), 11 pages, CERN--TH.6922/9
Unfolding Rates for the Diffusion-Collision Model
In the diffusion-collision model, the unfolding rates are given by the
likelihood of secondary structural cluster dissociation. In this work, we
introduce an unfolding rate calculation for proteins whose secondary structural
elements are -helices, modeled from thermal escape over a barrier which
arises from the free energy in buried hydrophobic residues. Our results are in
good agreement with currently accepted values for the attempt rate.Comment: Shorter version of cond-mat/0011024 accepted for publication in PR
Molecular evolution of aphids and their primary ( Buchnera sp.) and secondary endosymbionts: implications for the role of symbiosis in insect evolution.
Aphids maintain an obligate, endosymbiotic association with Buchnera sp., a bacterium closely related to Escherichia coli. Bacteria are housed in specialized cells of organ-like structures called bacteriomes in the hemocoel of the aphid and are maternally transmitted. Phylogenetic studies have shown that the association had a single origin, dated about 200-250 million years ago, and that host and endosymbiont lineages have evolved in parallel since then. However, the pattern of deepest branching within the aphid family remains unsolved, which thereby hampers tin appraisal of, for example, the role played by horizontal gene transfer in the early evolution of Buchnera. The main role of Buchnera in this association is the biosynthesis and provisioning of essential amino acids to its aphid host. Physiological and metabolic studies have recently substantiated such nutritional role. In addition, genetic studies of Buchnera from several aphids have shown additional modifications, such as strong genome reduction, high A+T content compared to free-living bacteria, differential evolutionary rates, a relative increase in the number of non-synonymous substitutions, and gene amplification mediated by plasmids. Symbiosis is an active process in insect evolution cis revealed by the intermediate values of the previous characteristics showed by secondary symbionts compared to free-living bacteria and Buchnera
Metallicity inhomogeneities in local star-forming galaxies as sign of recent metal-poor gas accretion
We measure the oxygen metallicity of the ionized gas along the major axis of
seven dwarf star-forming galaxies. Two of them, SDSSJ1647+21 and SDSSJ2238+14,
show 0.5 dex metallicity decrements in inner regions with enhanced
star-formation activity. This behavior is similar to the metallicity drop
observed in a number of local tadpole galaxies by Sanchez Almeida et al. (2013)
and interpreted as showing early stages of assembling in disk galaxies, with
the star formation sustained by external metal-poor gas accretion. The
agreement with tadpoles has several implications: (1) it proves that galaxies
other than the local tadpoles present the same unusual metallicity pattern. (2)
Our metallicity inhomogeneities were inferred using the direct method, thus
discarding systematic errors usually attributed to other methods. (3) Taken
together with the tadpole data, our findings suggest a threshold around one
tenth the solar value for the metallicity drops to show up. Although galaxies
with clear metallicity drops are rare, the physical mechanism responsible for
them may sustain a significant part of the star-formation activity in the local
Universe. We argue that the star-formation dependence of the mass-metallicity
relationship, as well as other general properties followed by most local disk
galaxies, are naturally interpreted as side effects of pristine gas infall.
Alternatives to the metal poor gas accretion are examined too.Comment: Accepted for publication in ApJ. 10 pages. 5 Fig
Dynamics of active membranes with internal noise
We study the time-dependent height fluctuations of an active membrane
containing energy-dissipating pumps that drive the membrane out of equilibrium.
Unlike previous investigations based on models that neglect either curvature
couplings or random fluctuations in pump activities, our formulation explores
two new models that take both of these effects into account. In the first
model, the magnitude of the nonequilibrium forces generated by the pumps is
allowed to fluctuate temporally. In the second model, the pumps are allowed to
switch between "on" and "off" states. We compute the mean squared displacement
of a membrane point for both models, and show that they exhibit distinct
dynamical behaviors from previous models, and in particular, a superdiffusive
regime specifically arising from the shot noise.Comment: 7 pages, 4 figure
- …