10,382 research outputs found

    CD44 Staining of Cancer Stem-Like Cells Is Influenced by Down-Regulation of CD44 Variant Isoforms and Up-Regulation of the Standard CD44 Isoform in the Population of Cells That Have Undergone Epithelial-to-Mesenchymal Transition

    Get PDF
    PMCID: PMC3577706This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    The United States Chiropractic Workforce: An alternative or complement to primary care?

    Get PDF
    UnlabelledBackgroundIn the United States (US) a shortage of primary care physicians has become evident. Other health care providers such as chiropractors might help address some of the nation's primary care needs simply by being located in areas of lesser primary care resources. Therefore, the purpose of this study was to examine the distribution of the chiropractic workforce across the country and compare it to that of primary care physicians.MethodsWe used nationally representative data to estimate the per 100,000 capita supply of chiropractors and primary care physicians according to the 306 predefined Hospital Referral Regions. Multiple variable Poisson regression was used to examine the influence of population characteristics on the supply of both practitioner-types.ResultsAccording to these data, there are 74,623 US chiropractors and the per capita supply of chiropractors varies more than 10-fold across the nation. Chiropractors practice in areas with greater supply of primary care physicians (Pearson's correlation 0.17, p-value < 0.001) and appear to be more responsive to market conditions (i.e. more heavily influenced by population characteristics) in regards to practice location than primary care physicians.ConclusionThese findings suggest that chiropractors practice in areas of greater primary care physician supply. Therefore chiropractors may be functioning in more complementary roles to primary care as opposed to an alternative point of access

    Tunneling decay of false vortices

    Full text link
    We consider the decay of vortices trapped in the false vacuum of a theory of scalar electrodynamics in 2+1 dimensions. The potential is inspired by models with intermediate symmetry breaking to a metastable vacuum that completely breaks a U(1) symmetry, while in the true vacuum the symmetry is unbroken. The false vacuum is unstable through the formation of true vacuum bubbles; however, the rate of decay can be extremely long. On the other hand, the false vacuum can contain metastable vortex solutions. These vortices contain the true vacuum inside in addition to a unit of magnetic flux and the appropriate topologically nontrivial false vacuum outside. We numerically establish the existence of vortex solutions which are classically stable; however, they can decay via tunneling. In general terms, they tunnel to a configuration which is a large, thin-walled vortex configuration that is now classically unstable to the expansion of its radius. We compute an estimate for the tunneling amplitude in the semi-classical approximation. We believe our analysis would be relevant to superconducting thin films or superfluids.Comment: 27 pages, 9 figure

    The Battle of the Bulge: Decay of the Thin, False Cosmic String

    Full text link
    We consider the decay of cosmic strings that are trapped in the false vacuum in a theory of scalar electrodynamics in 3+1 dimensions. We restrict our analysis to the case of thin-walled cosmic strings which occur when large magnetic flux trapped inside the string. Thus the string looks like a tube of fixed radius, at which it is classically stable. The core of the string contains magnetic flux in the true vacuum, while outside the string, separated by a thin wall, is the false vacuum. The string decays by tunnelling to a configuration which is represented by a bulge, where the region of true vacuum within, is ostensibly enlarged. The bulge can be described as the meeting, of a kink soliton anti-soliton pair, along the length of the string. It can be described as a bulge appearing in the initial string, starting from the string of small, classically stable radius, expanding to a fat string of large, classically unstable (to expansion) radius and then returning back to the string of small radius along its length. This configuration is the bounce point of a corresponding O(2) symmetric instanton, which we can determine numerically. Once the bulge appears it explodes in real time. The kink soliton anti-soliton pair recede from each other along the length of the string with a velocity that quickly approaches the speed of light, leaving behind a fat tube. At the same time the radius of the fat tube that is being formed, expands (transversely) as it is no longer classically stable, converting false vacuum to the true vacuum with ever diluting magnetic field within. The rate of this expansion is determined by the energy difference between the true vacuum and the false vacuum. Our analysis could be applied to a network, of cosmic strings formed in the very early universe or vortex lines in a superheated superconductor.Comment: 13 pages, 4 figure
    corecore