391 research outputs found

    Phonon switching and combined Fano-Rice effect in optical spectra of bilayer graphene

    Full text link
    Recent infrared measurements of phonon peaks in gated bilayer graphene reveal two striking signatures of electron-phonon interaction: an asymmetric Fano lineshape and a giant variation of the peak intensity as a function of the applied gate voltage. In this Letter we provide a unified theoretical framework which accounts for both these effects and unveils the occurrence of a switching mechanism between the symmetric (EgE_g) and anti-symmetric (EuE_u) phonon mode as dominant channel in the optical response. A complete phase diagram of the optical phonon response is also presented, as a function of both the charge density and the bandgap.Comment: final versio

    Charged-phonon theory and Fano effect in the optical spectroscopy of bilayer graphene

    Full text link
    Since their discovery, graphene-based systems represent an exceptional playground to explore the emergence of peculiar quantum effects. The present paper focuses on the anomalous appearence of strong infrared phonon resonances in the optical spectroscopy of bilayer graphene and on their pronounced Fano-like asymmetry, both tunable in gated devices. By developing a full microscopic many-body approach for the optical phonon response we explain how both effects can be quantitatively accounted for by the quantum interference of electronic and phononic excitations. We show that the phonon modes borrow a large dipole intensity from the electronic background, the so-called charged-phonon effect, and at the same time interfer with it, leading to a typical Fano response. Our approach allows one to disentangle the correct selection rules that control the relative importance of the two (symmetric and antisymmetric) relevant phonon modes for different values of the doping and/or of the gap in bilayer graphene. Finally, we discuss the extension of the same theoretical scheme to the Raman spectroscopy, to explain the lack of the same features on the Raman phononic spectra. Besides its remarkable success in explaining the existing experimental data in graphene-based systems, the present theoretical approach offers a general scheme for the microscopic understanding of Fano-like features in a wide variety of other systems.Comment: 16 pages, 11 eps figures, PR

    Landau Damping in a 2D Electron Gas with Imposed Quantum Grid

    Full text link
    Dielectric properties of semiconductor substrate with imposed two dimensional (2D) periodic grid of quantum wires or nanotubes (quantum crossbars, QCB) are studied. It is shown that a capacitive contact between QCB and semiconductor substrate does not destroy the Luttinger liquid character of the long wave QCB excitations. However, the dielectric losses of a substrate surface are drastically modified due to diffraction processes on the QCB superlattice. QCB-substrate interaction results in additional Landau damping regions of the substrate plasmons. Their existence, form and the density of losses are strongly sensitive to the QCB lattice constant.Comment: 9 pages, 12 eps-figure

    Infrared phonon activity in pristine graphite

    Full text link
    We study experimentally and theoretically the Fano-shaped phonon peak at 1590 cm1^{-1} (0.2 eV) in the in-plane optical conductivity of pristine graphite. We show that the anomalously large spectral weight and the Fano asymmetry of the peak can be qualitatively accounted for by a charged-phonon theory. A crucial role in this context is played by the particle-hole asymmetry of the electronic π\pi-bands.Comment: 5 pages, 4 figures, 1 tabl

    Stratified dispersive model for material characterization using terahertz time-domain spectroscopy

    Full text link
    We propose a novel THz material analysis approach which provides highly accurate material parameters and can be used for industrial quality control. The method treats the inspected material within its environment locally as a stratified system and describes the light-matter interaction of each layer in a realistic way. The approach is illustrated in the time-domain and frequency-domain for two potential fields of implementation of THz technology: quality control of (coated) paper sheets and car paint multilayers, both measured in humid air.Comment: 4 pages, 4 figure

    Kramers-Kronig constrained variational analysis of optical spectra

    Full text link
    A universal method of extraction of the complex dielectric function ϵ(ω)=ϵ1(ω)+iϵ2(ω)\epsilon(\omega)=\epsilon_{1}(\omega)+i\epsilon_{2}(\omega) from experimentally accessible optical quantities is developed. The central idea is that ϵ2(ω)\epsilon_{2}(\omega) is parameterized independently at each node of a properly chosen anchor frequency mesh, while ϵ1(ω)\epsilon_{1}(\omega) is dynamically coupled to ϵ2(ω)\epsilon_{2}(\omega) by the Kramers-Kronig (KK) transformation. This approach can be regarded as a limiting case of the multi-oscillator fitting of spectra, when the number of oscillators is of the order of the number of experimental points. In the case of the normal-incidence reflectivity from a semi-infinite isotropic sample the new method gives essentially the same result as the conventional KK transformation of reflectivity. In contrast to the conventional approaches, the proposed technique is applicable, without readaptation, to virtually all types of linear-response optical measurements, or arbitrary combinations of measurements, such as reflectivity, transmission, ellipsometry {\it etc.}, done on different types of samples, including thin films and anisotropic crystals.Comment: 10 pages, 7 figure

    Anisotropy of graphite optical conductivity

    Full text link
    The graphite conductivity is evaluated for frequencies between 0.1 eV, the energy of the order of the electron-hole overlap, and 1.5 eV, the electron nearest hopping energy. The in-plane conductivity per single atomic sheet is close to the universal graphene conductivity e2/4e^2/4\hbar and, however, contains a singularity conditioned by peculiarities of the electron dispersion. The conductivity is less in the cc-direction by the factor of the order of 0.01 governed by electron hopping in this direction.Comment: 3 pages, 3 figure

    Optical properties of BiTeBr and BiTeCl

    Full text link
    We present a comparative study of the optical properties - reflectance, transmission and optical conductivity - and Raman spectra of two layered bismuth-tellurohalides BiTeBr and BiTeCl at 300 K and 5 K, for light polarized in the a-b planes. Despite different space groups, the optical properties of the two compounds are very similar. Both materials are doped semiconductors, with the absorption edge above the optical gap which is lower in BiTeBr (0.62 eV) than in BiTeCl (0.77 eV). The same Rashba splitting is observed in the two materials. A non-Drude free carrier contribution in the optical conductivity, as well as three Raman and two infrared phonon modes, are observed in each compound. There is a dramatic difference in the highest infrared phonon intensity for the two compounds, and a difference in the doping levels. Aspects of the strong electron-phonon interaction are identified. Several interband transitions are assigned, among them the low-lying absorption β\beta which has the same value 0.25 eV in both compounds, and is caused by the Rashba spin splitting of the conduction band. An additional weak transition is found in BiTeCl, caused by the lower crystal symmetry.Comment: Accepted in PR

    Infrared spectroscopy of hole doped ABA-stacked trilayer graphene

    Full text link
    Using infrared spectroscopy, we investigate bottom gated ABA-stacked trilayer graphene subject to an additional environment-induced p-type doping. We find that the Slonczewski-Weiss-McClure tight-binding model and the Kubo formula reproduce the gate voltage-modulated reflectivity spectra very accurately. This allows us to determine the charge densities and the potentials of the {\pi}-band electrons on all graphene layers separately and to extract the interlayer permittivity due to higher energy bands.Comment: 6 pages, 6 figures Corrected sign of fig 3 and visibilty of fig
    corecore