Dielectric properties of semiconductor substrate with imposed two dimensional
(2D) periodic grid of quantum wires or nanotubes (quantum crossbars, QCB) are
studied. It is shown that a capacitive contact between QCB and semiconductor
substrate does not destroy the Luttinger liquid character of the long wave QCB
excitations. However, the dielectric losses of a substrate surface are
drastically modified due to diffraction processes on the QCB superlattice.
QCB-substrate interaction results in additional Landau damping regions of the
substrate plasmons. Their existence, form and the density of losses are
strongly sensitive to the QCB lattice constant.Comment: 9 pages, 12 eps-figure