1,310 research outputs found

    Respective influence of in-plane and out-of-plane spin-transfer torques in magnetization switching of perpendicular magnetic tunnel junctions

    Full text link
    The relative contributions of in-plane (damping-like) and out-of-plane (field-like) spin-transfer-torques in the magnetization switching of out-of-plane magnetized magnetic tunnel junctions (pMTJ) has been theoretically analyzed using the transformed Landau-Lifshitz (LL) equation with the STT terms. It is demonstrated that in a pMTJ structure obeying macrospin dynamics, the out-of-plane torque influences the precession frequency but it does not contribute significantly to the STT switching process (in particular to the switching time and switching current density), which is mostly determined by the in-plane STT contribution. This conclusion is confirmed by finite temperature and finite writing pulse macrospin simulations of the current-field switching diagrams. It contrasts with the case of STT-switching in in-plane magnetized MTJ in which the field-like term also influences the switching critical current. This theoretical analysis was successfully applied to the interpretation of voltage-field STT switching diagrams experimentally measured on perpendicular MTJ pillars 36 nm in diameter, which exhibit macrospin-like behavior. The physical nonequivalence of Landau and Gilbert dissipation terms in presence of STT-induced dynamics is also discussed

    Characterization of Thin Film Materials using SCAN meta-GGA, an Accurate Nonempirical Density Functional

    Full text link
    We discuss self-consistently obtained ground-state electronic properties of monolayers of graphene and a number of beyond graphene compounds, including films of transition-metal dichalcogenides (TMDs), using the recently proposed strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation (meta-GGA) to the density functional theory. The SCAN meta-GGA results are compared with those based on the local density approximation (LDA) as well as the generalized gradient approximation (GGA). As expected, the GGA yields expanded lattices and softened bonds in relation to the LDA, but the SCAN meta-GGA systematically improves the agreement with experiment. Our study suggests the efficacy of the SCAN functional for accurate modeling of electronic structures of layered materials in high-throughput calculations more generally

    Ab-initio Molecular Dynamics study of electronic and optical properties of silicon quantum wires: Orientational Effects

    Full text link
    We analyze the influence of spatial orientation on the optical response of hydrogenated silicon quantum wires. The results are relevant for the interpretation of the optical properties of light emitting porous silicon. We study (111)-oriented wires and compare the present results with those previously obtained within the same theoretical framework for (001)-oriented wires [F. Buda {\it et al.}, {\it Phys. Rev. Lett.} {\bf 69}, 1272, (1992)]. In analogy with the (001)-oriented wires and at variance with crystalline bulk silicon, we find that the (111)-oriented wires exhibit a direct gap at k=0{\bf k}=0 whose value is largely enhanced with respect to that found in bulk silicon because of quantum confinement effects. The imaginary part of the dielectric function, for the external field polarized in the direction of the axis of the wires, shows features that, while being qualitatively similar to those observed for the (001) wires, are not present in the bulk. The main conclusion which emerges from the present study is that, if wires a few nanometers large are present in the porous material, they are optically active independently of their specific orientation.Comment: 14 pages (plus 6 figures), Revte

    Effects of Substituents on the Length of Central C(sp^3)-C(sp^3) Bond in Anthracene Photodimers and Related Molecules

    Get PDF
    Effects of substituents on the lengths of the central C–C single bond in the butterfly-shaped anthracene photodimers (1)–(7) and lepidopterenes (8) are studied. X-Ray analysis of the photodimer (10) of 9,10-difluoroanthracene gave a C(9)–C(10′) bond length of 1.631 (3)Å. An attempt to re-determine molecular structure of the photoisomer (5) of [2.2](9,10) anthracenophane (12) by neutron diffraction analysis is also reported [C(9)–C(10′): obs. 1.64(1), calc. 1.63(1)Å]. The D_2 structure that had been proposed for the minimum-energy conformation of (5) is questioned and the D_(2h) symmetric conformation is suggested on the basis of the diffraction results and MNDO calculations. The experimentally determined distances of the long central C–C bonds in these butterfly compounds including dianthronyl (9) are well reproduced by MNDO calculations with a standard deviation of 0.013 Å. Small but significant further elongation of the central C–C bond by up to 0.07 Å resulting from annulation of cyclobutane or cyclopentane ring in anthracene photodimers and from remote chlorine substitution in lepidopterene are interpreted in terms of the increased π→σ^* orbital interaction

    Statistical analysis of industrial indicators of enterprises of various property forms

    Get PDF
    In this paper we study the impact of the economic crisis on the enterprises of subsection DM "Manufacture of transport means and equipment" manufacturing industries of Russia in the context of ownership. The study is based on comparative statistical analysis of available indicators of enterprises producing vehicles in 2013, 2014 and 2015 located in Russian, foreign and co-property

    Calculating energy derivatives for quantum chemistry on a quantum computer

    Get PDF
    Modeling chemical reactions and complicated molecular systems has been proposed as the `killer application' of a future quantum computer. Accurate calculations of derivatives of molecular eigenenergies are essential towards this end, allowing for geometry optimization, transition state searches, predictions of the response to an applied electric or magnetic field, and molecular dynamics simulations. In this work, we survey methods to calculate energy derivatives, and present two new methods: one based on quantum phase estimation, the other on a low-order response approximation. We calculate asymptotic error bounds and approximate computational scalings for the methods presented. Implementing these methods, we perform the world's first geometry optimization on an experimental quantum processor, estimating the equilibrium bond length of the dihydrogen molecule to within 0.014 Angstrom of the full configuration interaction value. Within the same experiment, we estimate the polarizability of the H2 molecule, finding agreement at the equilibrium bond length to within 0.06 a.u. (2% relative error).Comment: 19 pages, 1 page supplemental, 7 figures. v2 - tidied up and added example to appendice

    A Homogenization Approach for Turbulent Channel Flows over Porous Substrates: Formulation and Implementation of Effective Boundary Conditions

    Get PDF
    The turbulent flow through a plane channel bounded by a single permeable wall is considered; this is a problem of interest since a carefully chosen distribution of grains and voids in the porous medium can result in skin friction reduction for the flow in the channel. In the homogenization approach followed here, the flow is not resolved in the porous layer, but an effective velocity boundary condition is developed (and later enforced) at a virtual interface between the porous bed and the channel flow. The condition is valid up to order two in terms of a small gauge factor, the ratio of microscopic to macroscopic length scales; it contains slip coefficients, plus surface and bulk permeability coefficients, which arise from the solution of microscale problems solved in a representative elementary volume. Using the effective boundary conditions, free of empirical parameters, direct numerical simulations are then performed in the channel, considering a few different porous substrates. The results, examined in terms of mean values and turbulence statistics, demonstrate the drag-reducing effects of porous substrates with streamwise-preferential alignment of the solid grains

    Finite Element Modeling of Charge and Spin-currents in Magnetoresistive Pillars with Current Crowding Effects

    Full text link
    The charge and spin diffusion equations taking into account spin-flip and spin-transfer torque were numerically solved using a finite element method in complex non-collinear geometry. This approach was used to study the spin-dependent transport in giant magnetoresistance metallic pillars sandwiched between extended electrodes as in magnetoresistive heads for hard disk drives. The charge current crowding around the boundaries between the electrodes and the pillar has a quite significant influence on the spin current.Comment: 11 pages, 4 figure

    Chirality in Bare and Passivated Gold Nanoclusters

    Get PDF
    Chiral structures have been found as the lowest-energy isomers of bare (Au28_{28} and Au55)andthiolpassivated(Au_{55}) and thiol-passivated (Au_{28}(SCH3)_{3})_{16}andAu and Au_{38}(SCH_{3})_{24}) gold nanoclusters. The degree of chirality existing in the chiral clusters was calculated using the Hausdorff chirality measure. We found that the index of chirality is higher in the passivated clusters and decreases with the cluster size. These results are consistent with the observed chiroptical activity recently reported for glutahione-passivated gold nanoclusters, and provide theoretical support for the existence of chirality in these novel compounds.Comment: 5 pages, 1 figure. Submitted to PR

    Temperature dependence of the emission linewidth in MgO-based spin torque nano-oscillators

    Full text link
    Spin transfer driven excitations in magnetic nanostructures are characterized by a relatively large microwave emission linewidth (10 -100 MHz). Here we investigate the role of thermal fluctuations as well as of the non-linear amplitude-phase coupling parameter and the amplitude relaxation rate to explain the linewidth broadening of in-plane precession modes induced in planar nanostructures. Experiments on the linewidth broadening performed on MgO based magnetic tunnel junctions are compared to the linewidth obtained from macrospin simulations and from evaluation of the phase variance. In all cases we find that the linewidth varies linearly with temperature when the amplitude relaxation rate is of the same order as the linewidth and when the amplitude-phase coupling parameter is relatively small. The small amplitude-phase coupling parameter means that the linewidth is dominated by direct phase fluctuations and not by amplitude fluctuations, explaining thus its linear dependence as a function of temperature
    corecore