7,364 research outputs found
Communication and optimal hierarchical networks
We study a general and simple model for communication processes. In the
model, agents in a network (in particular, an organization) interchange
information packets following simple rules that take into account the limited
capability of the agents to deal with packets and the cost associated to the
existence of open communication channels. Due to the limitation in the
capability, the network collapses under certain conditions. We focus on when
the collapse occurs for hierarchical networks and also on the influence of the
flatness or steepness of the structure. We find that the need for hierarchy is
related to the existence of costly connections.Comment: 7 pages, 2 figures. NATO ARW on Econophysic
Adaptive simulation using mode identification
Adaptive simulation using modal clustering and method of potential function
Statistical Dynamics of Religions and Adherents
Religiosity is one of the most important sociological aspects of populations.
All religions may evolve in their beliefs and adapt to the society
developments. A religion is a social variable, like a language or wealth, to be
studied like any other organizational parameter.
Several questions can be raised, as considered in this study: e.g. (i) from a
``macroscopic'' point of view : How many religions exist at a given time? (ii)
from a ``microscopic'' view point: How many adherents belong to one religion?
Does the number of adherents increase or not, and how? No need to say that if
quantitative answers and mathematical laws are found, agent based models can be
imagined to describe such non-equilibrium processes.
It is found that empirical laws can be deduced and related to preferential
attachment processes, like on evolving network; we propose two different
algorithmic models reproducing as well the data. Moreover, a population
growth-death equation is shown to be a plausible modeling of evolution dynamics
in a continuous time framework. Differences with language dynamic competition
is emphasized.Comment: submitted to EP
Prisoner's Dilemma cellular automata revisited: evolution of cooperation under environmental pressure
We propose an extension of the evolutionary Prisoner's Dilemma cellular
automata, introduced by Nowak and May \cite{nm92}, in which the pressure of the
environment is taken into account. This is implemented by requiring that
individuals need to collect a minimum score , representing
indispensable resources (nutrients, energy, money, etc.) to prosper in this
environment. So the agents, instead of evolving just by adopting the behaviour
of the most successful neighbour (who got ), also take into account if
is above or below the threshold . If an
individual has a probability of adopting the opposite behaviour from the one
used by its most successful neighbour. This modification allows the evolution
of cooperation for payoffs for which defection was the rule (as it happens, for
example, when the sucker's payoff is much worse than the punishment for mutual
defection). We also analyse a more sophisticated version of this model in which
the selective rule is supplemented with a "win-stay, lose-shift" criterion. The
cluster structure is analyzed and, for this more complex version we found
power-law scaling for a restricted region in the parameter space.Comment: 15 pages, 8 figures; added figures and revised tex
Making new connections towards cooperation in the prisoner's dilemma game
Evolution of cooperation in the prisoner's dilemma game is studied where
initially all players are linked via a regular graph, having four neighbors
each. Simultaneously with the strategy evolution, players are allowed to make
new connections and thus permanently extend their neighborhoods, provided they
have been successful in passing their strategy to the opponents. We show that
this simple coevolutionary rule shifts the survival barrier of cooperators
towards high temptations to defect and results in highly heterogeneous
interaction networks with an exponential fit best characterizing their degree
distributions. In particular, there exist an optimal maximal degree for the
promotion of cooperation, warranting the best exchange of information between
influential players.Comment: 6 two-column pages, 7 figures; accepted for publication in
Europhysics Letter
Distinguishing the opponents in the prisoner dilemma in well-mixed populations
Here we study the effects of adopting different strategies against different
opponent instead of adopting the same strategy against all of them in the
prisoner dilemma structured in well-mixed populations. We consider an
evolutionary process in which strategies that provide reproductive success are
imitated and players replace one of their worst interactions by the new one. We
set individuals in a well-mixed population so that network reciprocity effect
is excluded and we analyze both synchronous and asynchronous updates. As a
consequence of the replacement rule, we show that mutual cooperation is never
destroyed and the initial fraction of mutual cooperation is a lower bound for
the level of cooperation. We show by simulation and mean-field analysis that
for synchronous update cooperation dominates while for asynchronous update only
cooperations associated to the initial mutual cooperations are maintained. As a
side effect of the replacement rule, an "implicit punishment" mechanism comes
up in a way that exploitations are always neutralized providing evolutionary
stability for cooperation
Nonequilibrium phase transition in a model for social influence
We present extensive numerical simulations of the Axelrod's model for social
influence, aimed at understanding the formation of cultural domains. This is a
nonequilibrium model with short range interactions and a remarkably rich
dynamical behavior. We study the phase diagram of the model and uncover a
nonequilibrium phase transition separating an ordered (culturally polarized)
phase from a disordered (culturally fragmented) one. The nature of the phase
transition can be continuous or discontinuous depending on the model
parameters. At the transition, the size of cultural regions is power-law
distributed.Comment: 5 pages, 4 figure
- âŠ