20 research outputs found

    Frequency-dependent fitness induces multistability in coevolutionary dynamics

    Get PDF
    Evolution is simultaneously driven by a number of processes such as mutation, competition and random sampling. Understanding which of these processes is dominating the collective evolutionary dynamics in dependence on system properties is a fundamental aim of theoretical research. Recent works quantitatively studied coevolutionary dynamics of competing species with a focus on linearly frequency-dependent interactions, derived from a game-theoretic viewpoint. However, several aspects of evolutionary dynamics, e.g. limited resources, may induce effectively nonlinear frequency dependencies. Here we study the impact of nonlinear frequency dependence on evolutionary dynamics in a model class that covers linear frequency dependence as a special case. We focus on the simplest non-trivial setting of two genotypes and analyze the co-action of nonlinear frequency dependence with asymmetric mutation rates. We find that their co-action may induce novel metastable states as well as stochastic switching dynamics between them. Our results reveal how the different mechanisms of mutation, selection and genetic drift contribute to the dynamics and the emergence of metastable states, suggesting that multistability is a generic feature in systems with frequency-dependent fitness.Comment: 12 pages, 6 figures; J. R. Soc. Interface (2012

    Impact of electrical vehicle charging in low voltage grid structures

    No full text
    The project sMobiliTyCOM [1] aims for reduction of plugin electrical vehicles (PEV) operating cost in the field of mobile nursing services by providing services of efficient routing as well as optimized charging strategies. The project work includes the impact analysis in low voltage grid structures. This paper presents analysis results based on the combination of the load flow simulation tool OpenDSS [2] and Matlab® scripts for preparation and evaluation of the calculated results

    Characterization of Zr-Containing Dispersoids in Al–Zn–Mg–Cu Alloys by Small-Angle Scattering

    No full text
    The characterization of Zr-containing dispersoids in aluminum alloys is challenging due to their broad size distribution, low volume fraction, and heterogeneous distribution within the grains. In this work, small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS) were compared to scanning electron microscopy (SEM) and transmission electron microscopy (TEM) regarding their capability to characterize Zr-containing dispersoids in aluminum alloys. It was demonstrated that both scattering techniques are suitable tools to characterize dispersoids in a multi-phase industrial 7xxx series aluminum alloy. While SAXS is more sensitive than SANS due to the high electron density of Zr-containing dispersoids, SANS has the advantage of being able to probe a much larger sample volume. The combination of both scattering techniques allows for the verification that the contribution from dispersoids can be separated from that of other precipitate phases such as the S-phase or GP-zones. The size distributions obtained from SAXS, SANS and TEM showed good agreement. The SEM-derived size distributions were, however, found to significantly deviate from those of the other techniques, which can be explained by considering the resolution-limited restrictions of the different techniques
    corecore