37 research outputs found

    Cell surface immobilization of GABAARs in cerebellar granule cells depends on the M3/M4 cytoplasmatic loop of the alpha 1 subunit

    Get PDF
    Gamma-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the vertebrate brain. The localization of GABA receptors type A (GABAARs) at strategically located domains of the neuronal membrane is of vital importance for fast inhibitory synapse transmission efficacy. We have shown before that the lateral mobility of GABAARs depends on subunit composition of the complex. To study the lateral mobility of GABAARs in living, cultured neurons, we transfected cerebellar granule cells with either the complete 1 GABAAR subunit or with a truncation of the 1 subunit that lacks the major intracellular loop (M3/M4). We examined the location and lateral mobility of receptors containing both versions of the 1 subunit in living neurons. From fluorescence recovery after photobleaching experiments we present novel evidences that the intracellular M3/M4 loop of the 1 subunit restricts the lateral mobility of GABAARs when expressed in neurons. In addition, our immunocytochemical studies suggested that receptors containing the truncated subunit seem to be unable to reach synaptic localizations. Here we show for the first time that the 1 intracellular loop (M3/M4) domain has a relevant role in controlling the lateral mobility of GABAARs in neurons, and we believe that this is a novel and important contribution in neurobiology of GABAA receptors

    Pitx2c deficiency confers cellular electrophysiological hallmarks of atrial fibrillation to isolated atrial myocytes

    Get PDF
    Aims Atrial fibrillation (AF) has been associated with altered expression of the transcription factor Pitx2c and a high incidence of calcium release-induced afterdepolarizations. However, the relationship between Pitx2c expression and defective calcium homeostasis remains unclear and we here aimed to determine how Pitx2c expression affects calcium release from the sarcoplasmic reticulum (SR) and its impact on electrical activity in isolated atrial myocytes. Methods To address this issue, we applied confocal calcium imaging and patch-clamp techniques to atrial myocytes isolated from a mouse model with conditional atrial-specific deletion of Pitx2c. Results Our findings demonstrate that heterozygous deletion of Pitx2c doubles the calcium spark frequency, increases the frequency of sparks/site 1.5-fold, the calcium spark decay constant from 36 to 42 ms and the wave frequency from none to 3.2 min-1. Additionally, the cell capacitance increased by 30% and both the SR calcium load and the transient inward current (ITI) frequency were doubled. Furthermore, the fraction of cells with spontaneous action potentials increased from none to 44%. These effects of Pitx2c deficiency were comparable in right and left atrial myocytes, and homozygous deletion of Pitx2c did not induce any further effects on sparks, SR calcium load, ITI frequency or spontaneous action potentials. Conclusion Our findings demonstrate that heterozygous Pitx2c deletion induces defects in calcium homeostasis and electrical activity that mimic derangements observed in right atrial myocytes from patients with AF and suggest that Pitx2c deficiency confers cellular electrophysiological hallmarks of AF to isolated atrial myocytes.Peer ReviewedPostprint (published version

    Release of muscle α-actin into serum after intensive exercise

    Get PDF
    Purpose: To study the effects of high-level matches on serum alpha actin and other muscle damage markers in teams of rugby and handball players. Methods: Blood samples were drawn from 23 sportsmen: 13 rugby players and 10 handball players. One sample was drawn with the player at rest before the match and one immediately after the match. Immunoassays were used to determine troponin I, troponin T, LDH, and myoglobin concentrations. Western blot and densitometry were used to measure α-actin concentrations. Muscle injury was defined by a total CK value of > 500 IU/L (Rosalki method). Results: Mean pre- and post-match serum alpha-actin values were, respectively, 7.16 and 26.47 μg/ml in the handball group and 1.24 and 20.04 μg/ml in the rugby team. CPK, LDH and myoglobin but not troponin 1 levels also significantly differed between these time points. According to these results, large amounts of α-actin are released into peripheral blood immediately after intense physical effort. Possible cross-interference between skeletal and cardiac muscle damage can be discriminated by the combined use of α-actin and troponin I. Conclusion: The significant increase in alpha-actin after a high-level match may be a reliable marker for the early diagnosis and hence more effective treatment of muscle injury

    Desarrollo de una herramienta basada en un soporte multimedia para el autoaprendizaje de la anatomía radiológica

    Get PDF
    La instauración del Espacio Europeo de Educación Superior nos conduce a la adopción de procesos de renovación en la metodología docente. Se deben desarrollar estrategias en las que el alumno sea protagonista de su propio aprendizaje. En nuestro ámbito enseñanza, las Ciencias de la Salud, nos enfrentamos a la necesidad de aplicar estos principios integrando conocimientos básicos y clínicos y desarrollando materiales útiles en la actividad profesional de nuestros alumnos. En este contexto, diferentes Profesores del Área de Anatomía y Embriología Humana hemos desarrollado un material docente que interesa a un conjunto de conocimientos de significada complejidad comunes a las diferentes Licenciaturas y Diplomaturas de Ciencias de la Salud. Nuestra aplicación permite el estudio individual de elementos osteológicos y la compresión de los patrones radiológicos normales. Dicho material podrá ser utilizado en procesos de enseñanza aprendizaje mediante sistemas didácticos alternativos

    GR-891: a novel 5-fluorouracil acyclonucleoside prodrug for differentiation therapy in rhabdomyosarcoma cells

    Get PDF
    Differentiation therapy provides an alternative treatment of cancer that overcomes the undesirable effects of classical chemotherapy, i.e. cytotoxicity and resistance to drugs. This new approach to cancer therapy focuses on the development of specific agents designed to selectively engage the process of terminal differentiation, leading to the elimination of tumorigenic cells and recovery of normal cell homeostasis. A series of new anti-cancer pyrimidine acyclonucleoside-like compounds were designed and synthesized by structural modifications of 5-fluorouracil, a drug which causes considerable cell toxicity and morbidity, and we evaluated their applicability for differentiation therapy in human rhabdomyosarcoma cells. We tested the pyrimidine derivative GR-891, (RS)-1-{[3-(2-hydroxyethoxy)-1-isopropoxy]propyl}-5-fluorouracil, an active drug which shows low toxicity in vivo and releases acrolein which is an aldehyde with anti-tumour activity. Both GR-891 and 5-fluorouracil caused time- and dose-dependent growth inhibition in vitro; however, GR-891 showed no cytotoxicity at low doses (22.5 μmol l−1 and 45 μmol l−1) and induced terminal myogenic differentiation in RD cells (a rhabdomyosarcoma cell line) treated for 6 days. Changes in morphological features and in protein organization indicated re-entry in the pathway of muscular maturation. Moreover, GR-891 increased adhesion capability mediated by the expression of fibronectin, and did not induce overexpression of P-glycoprotein, the mdr1 gene product, implicated in multidrug resistance. New acyclonucleoside-like compounds such as GR-891 have important potential advantages over 5-fluorouracil because of their lower toxicity and their ability to induce myogenic differentiation in rhabdomyosarcoma cells. Our results suggest that this drug may be useful for differentiation therapy in this type of tumour. 1999 Cancer Research Campaig

    The Chemotherapeutic Drug 5-Fluorouracil Promotes PKR-Mediated Apoptosis in a p53- Independent Manner in Colon and Breast Cancer Cells

    Get PDF
    The chemotherapeutic drug 5-FU is widely used in the treatment of a range of cancers, but resistance to the drug remains a major clinical problem. Since defects in the mediators of apoptosis may account for chemo-resistance, the identification of new targets involved in 5-FU-induced apoptosis is of main clinical interest. We have identified the ds-RNA-dependent protein kinase (PKR) as a key molecular target of 5-FU involved in apoptosis induction in human colon and breast cancer cell lines. PKR distribution and activation, apoptosis induction and cytotoxic effects were analyzed during 5-FU and 5-FU/IFNα treatment in several colon and breast cancer cell lines with different p53 status. PKR protein was activated by 5-FU treatment in a p53-independent manner, inducing phosphorylation of the protein synthesis translation initiation factor eIF-2α and cell death by apoptosis. Furthermore, PKR interference promoted a decreased response to 5-FU treatment and those cells were not affected by the synergistic antitumor activity of 5-FU/IFNα combination. These results, taken together, provide evidence that PKR is a key molecular target of 5-FU with potential relevance in the clinical use of this drug
    corecore