4 research outputs found

    Computational Modeling of Neuronal Current MRI Signals with Rat Somatosensory Cortical Neurons

    No full text
    Magnetic field generated by active neurons has recently been considered to determine location of neuronal activity directly with magnetic resonance imaging (MRI), but controversial results have been reported about detection of such small magnetic fields. In this study, multiple neuronal morphologies of rat tissue were modeled to investigate better estimation of MRI signal change produced by neuronal magnetic field (NMF). Ten pyramidal neurons from layer II to VI of rat somatosensory area with realistic morphology, biophysics, and neuronal density were modeled to simulate NMF of neuronal tissue, from which effects of NMF on MRI signals were obtained. Neuronal current MRI signals, which consist of relative magnitude signal change (RMSC) and phase signal change (PSC), were at least three and one orders of magnitude less than a tissue with single neuron type, respectively. Also, a reduction in voxel size could increase signal alterations. Furthermore, with selection of zenith angle of external main magnetic field related to tissue surface near to 90°, RMSC could be maximized. This value for PSC would be 90° for small voxel size and zero degree for large ones. © 2015, International Association of Scientists in the Interdisciplinary Areas and Springer-Verlag Berlin Heidelberg

    Estimation of phase signal change in neuronal current MRI for evoke response of tactile detection with realistic somatosensory laminar network model

    No full text
    Magnetic field generated by neuronal activity could alter magnetic resonance imaging (MRI) signals but detection of such signal is under debate. Previous researches proposed that magnitude signal change is below current detectable level, but phase signal change (PSC) may be measurable with current MRI systems. Optimal imaging parameters like echo time, voxel size and external field direction, could increase the probability of detection of this small signal change. We simulate a voxel of cortical column to determine effect of such parameters on PSC signal. We extended a laminar network model for somatosensory cortex to find neuronal current in each segment of pyramidal neurons (PN). 60,000 PNs of simulated network were positioned randomly in a voxel. Biot�savart law applied to calculate neuronal magnetic field and additional phase. The procedure repeated for eleven neuronal arrangements in the voxel. PSC signal variation with the echo time and voxel size was assessed. The simulated results show that PSC signal increases with echo time, especially 100/80�ms after stimulus for gradient echo/spin echo sequence. It can be up to 0.1�mrad for echo time�=�175�ms and voxel size�=�1.48�� 1.48�� 2.18�mm3. With echo time less than 25�ms after stimulus, it was just acquired effects of physiological noise on PSC signal. The absolute value of the signal increased with decrease of voxel size, but its components had complex variation. External field orthogonal to local surface of cortex maximizes the signal. Expected PSC signal for tactile detection in the somatosensory cortex increase with echo time and have no oscillation. � 2016, Australasian College of Physical Scientists and Engineers in Medicine
    corecore