1,139 research outputs found

    An infrared singularity in the damping rate for longitudinal gluons in hot QCD

    Get PDF
    We calculate γl(0)\gamma_l(0), the damping rate for longitudinal on-shell gluons with zero momentum in hot QCD using the hard-thermal-loop (htl) scheme. We find it to be divergent in the infrared, which means that in this scheme γl(0)\gamma_l(0) is different from γt(0)\gamma_t(0), the corresponding damping rate for transverse gluons which is known to be finite. This result suggests that the htl scheme is infrared sensitive and thus may need to be improved upon in this sector. We discuss this issue after we present our calculation.Comment: 11 pages, RevTeX. Two signs corrected. Same result but substantially rewritten with more emphasis on the infrared problem. References adde

    Sum rules for four-spinon dynamic structure factor in XXX model

    Full text link
    In the context of the antiferromagnetic spin 1/2 Heisenberg quantum spin chain (XXX model), we estimate the contribution of the exact four-spinon dynamic structure factor S4S_4 by calculating a number of sum rules the total dynamic structure factor SS is known to satisfy exactly. These sum rules are: the static susceptibility, the integrated intensity, the total integrated intensity, the first frequency moment and the nearest-neighbor correlation function. We find that the contribution of S4S_4 is between 1% and 2.5%, depending on the sum rule, whereas the contribution of the exact two-spinon dynamic structure factor S2S_2 is between 70% and 75%. This is consistent with the expected scattering weight of states from outside the spin-wave continuum. The calculations are numerical and Monte Carlo based. Good statistics are obtained.Comment: 21 pages, Revtex, 02 figure

    A model independent determination of Vub|V_{ub}| using the global q2q^2 dependence of the dispersive bounds on the BπlνB\to\pi l\nu form factors

    Full text link
    We propose a method to determine the CKM matrix element Vub|V_{ub}| using the global q2q^2 dependence of the dispersive bound on the form factors for BπlνB\to \pi l\nu decay. Since the lattice calculation of the BπlνB\to \pi l\nu form factor is limited to the large q2q^2 regime, only the experimental data in a limited kinematic range can be used in a conventional method. In our new method which exploits the statistical distributions of the dispersive bound proposed by Lellouch, we can utilize the information of the global q2q^2 dependence for all kinematic range. As a feasibility study we determine Vub|V_{ub}| by combining the form factors from quenched lattice QCD, the dispersive bounds, and the experimental data by CLEO. We show that the accuracy of Vub|V_{ub}| can be improved by our method.Comment: 12 pages, 13 figure

    Impact of sterile neutrinos on nuclear-assisted cLFV processes

    Get PDF
    We discuss charged lepton flavour violating processes occurring in the presence of muonic atoms, such as muon-electron conversion in nuclei CR(μe, N)\text{CR}(\mu -e, \text{ N}), the (Coulomb enhanced) decay of muonic atoms into a pair of electrons BR(μeee\mu^- e^- \to e^- e^-, N), as well as Muonium conversion and decay, MuMuˉ\text{Mu}-\bar{\text{Mu}} and Mue+e\text{Mu}\to e^+ e^-. Any experimental signal of these observables calls for scenarios of physics beyond the Standard Model. In this work, we consider minimal extensions of the Standard Model via the addition of sterile fermions, providing the corresponding complete analytical expressions for all the considered observables. We first consider an "ad hoc" extension with a single sterile fermion state, and investigate its impact on the above observables. Two well motivated mechanisms of neutrino mass generation are then considered: the Inverse Seesaw embedded into the Standard Model, and the ν\nuMSM. Our study reveals that, depending on their mass range and on the active-sterile mixing angles, sterile neutrinos can give significant contributions to the above mentioned observables, some of them even lying within present and future sensitivity of dedicated cLFV experiments. We complete the analysis by confronting our results to other (direct and indirect) searches for sterile fermions.Comment: 32 pages, 11 figures. v2: minor revision, matches published version on JHE

    Effect of steriles states on lepton magnetic moments and neutrinoless double beta decay

    Full text link
    We address the impact of sterile fermion states on the anomalous magnetic moment of charged leptons, as well as their contribution to neutrinoless double beta decays. We illustrate our results in a minimal, effective extension of the Standard Model by one sterile fermion state, and in a well-motivated framework of neutrino mass generation, embedding the Inverse Seesaw into the Standard Model. The simple "3+1" effective case succeeds in alleviating the tension related to the muon anomalous magnetic moment, albeit only at the 3σ\sigma level, and for light sterile states (corresponding to a }cosmologically disfavoured regime). Interestingly, our analysis shows that a future 0ν2β0 \nu 2 \beta observation does not necessarily imply an inverted hierarchy for the active neutrinos in this simple extension. Although the Inverse Seesaw realisation here addressed could indeed ease the tension in (g2)μ(g-2)_\mu, bounds from lepton universality in kaon decays mostly preclude this from happening. However, these scenarios can also have a strong impact on the interpretation of a future 0ν2β0 \nu 2 \beta signal regarding the hierarchy of the active neutrino mass spectrum.Comment: 25 pages, 19 figure

    Constraints on a general 3-generation neutrino mass matrix from neutrino data: application to the MSSM with R-parity violation

    Get PDF
    We consider a general symmetric (3×3)(3\times 3) mass matrix for three generations of neutrinos. Imposing the constraints, from the atmospheric neutrino and solar neutrino anomalies as well as from the CHOOZ experiment, on the mass squared differences and on the mixing angles, we identify the ranges of allowed inputs for the 6 matrix elements. We apply our results to Majorana left-handed neutrino masses generated at tree level and through fermion--sfermion loop diagrams in the MSSM with R-parity violation. The present experimental results on neutrinos from laboratories, cosmology and astrophysics are implemented to either put bounds on trilinear (λijk,λijk\lambda_{ijk}, \lambda'_{ijk}) and bilinear (μe,μ,τ\mu_{e,\mu,\tau}) R-parity-violating couplings or constrain combinations of products of these couplings.Comment: 35 pages, 25 PS figures, REVTeX, revised version to appear in Nuclear physics

    Minimal Lepton Flavour Violation and Leptogenesis with exclusively low-energy CP Violation

    Full text link
    We study the implications of a successful leptogenesis within the framework of Minimal Lepton Flavour Violation combined with radiative resonant leptogenesis and the PMNS matrix being the only source of CP violation, which can be obtained provided flavour effects are taken into account. We find that the right amount of the baryon asymmetry of the universe can be generated under the conditions of a normal hierarchy of the light neutrino masses, a non-vanishing Majorana phase, sin(theta_{13})>0.13 and m_{nu,lightest}<0.04 eV. If this is fulfilled, we find strong correlations among ratios of charged LFV processes.Comment: published in JHEP, small change

    Ultrasoft Quark Damping in Hot QCD

    Full text link
    We determine the quark damping rates in the context of next-to-leading order hard-thermal-loop summed perturbation of high-temperature QCD where weak coupling is assumed. The quarks are ultrasoft. Three types of divergent behavior are encountered: infrared, light-cone and at specific points determined by the gluon energies. The infrared divergence persists and is logarithmic whereas the two others are circumvented.Comment: 16 page

    Damping of very soft moving quarks in high-temperature QCD

    Get PDF
    We determine the analytic expression of the damping rates for very soft moving quarks in an expansion to second order in powers of their momentum in the context of QCD at high temperature. The calculation is performed using the hard-thermal-loop-summed perturbation scheme. We describe the range of validity of the expansion and make a comparison with other calculations, particularly those using a magnetic mass as a shield from infrared sensitivity. We discuss the possible occurrence of infrared divergences in our results and argue that they are due to magnetic sensitivity.Comment: 24 pages, REVTe
    corecore