9,267 research outputs found

    Patterning of dielectric nanoparticles using dielectrophoretic forces generated by ferroelectric polydomain films

    Full text link
    A theoretical study of a dielectrophoretic force, i.e. the force acting on an electrically neutral particle in the inhomogeneous electric field, which is produced by a ferroelectric domain pattern, is presented. It has been shown by several researchers that artificially prepared domain patterns with given geometry in ferroelectric single crystals represent an easy and flexible method for patterning dielectric nanoobjects using dielectrophoretic forces. The source of the dielectrophoretic force is a strong and highly inhomogeneous (stray) electric field, which exists in the vicinity of the ferroelectric domain walls at the surface of the ferroelectric film. We analyzed dielectrophoretic forces in the model of a ferroelectric film of a given thickness with a lamellar 180∘{}^\circ domain pattern. The analytical formula for the spatial distribution of the stray field in the ionic liquid above the top surface of the film is calculated including the effect of free charge screening. The spatial distribution of the dielectrophoretic force produced by the domain pattern is presented. The numerical simulations indicate that the intersection of the ferroelectric domain wall and the surface of the ferroelectric film represents a trap for dielectric nanoparticles in the case of so called positive dielectrophoresis. The effects of electrical neutrality of dielectric nanoparticles, free charge screening due to the ionic nature of the liquid, domain pattern geometry, and the Brownian motion on the mechanism of nanoparticle deposition and the stability of the deposited pattern are discussed.Comment: Accepted in the Journal of Applied Physics, 10 pages, 5 figure

    Scattered light images of spiral arms in marginally gravitationally unstable discs with an embedded planet

    Get PDF
    Scattered light images of transition discs in the near-infrared often show non-axisymmetric structures in the form of wide-open spiral arms in addition to their characteristic low-opacity inner gap region. We study self-gravitating discs and investigate the influence of gravitational instability on the shape and contrast of spiral arms induced by planet-disc interactions. Two-dimensional non-isothermal hydrodynamical simulations including viscous heating and a cooling prescription are combined with three-dimensional dust continuum radiative transfer models for direct comparison to observations. We find that the resulting contrast between the spirals and the surrounding disc in scattered light is by far higher for pressure scale height variations, i.e. thermal perturbations, than for pure surface density variations. Self-gravity effects suppress any vortex modes and tend to reduce the opening angle of planet-induced spirals, making them more tightly wound. If the disc is only marginally gravitationally stable with a Toomre parameter around unity, an embedded massive planet (planet-to-star mass ratio of 10−210^{-2}) can trigger gravitational instability in the outer disc. The spirals created by this instability and the density waves launched by the planet can overlap resulting in large-scale, more open spiral arms in the outer disc. The contrast of these spirals is well above the detection limit of current telescopes.Comment: Accepted for publication in MNRAS; 13 pages, 8 figure

    HESS J1632-478: an energetic relic

    Get PDF
    HESS J1632-478 is an extended and still unidentified TeV source in the galactic plane. In order to identify the source of the very high energy emission and to constrain its spectral energy distribution, we used a deep observation of the field obtained with XMM-Newton together with data from Molonglo, Spitzer and Fermi to detect counterparts at other wavelengths. The flux density emitted by HESS J1632-478 peaks at very high energies and is more than 20 times weaker at all other wavelengths probed. The source spectrum features two large prominent bumps with the synchrotron emission peaking in the ultraviolet and the external inverse Compton emission peaking in the TeV. HESS J1632-478 is an energetic pulsar wind nebula with an age of the order of 10^4 years. Its bolometric (mostly GeV-TeV) luminosity reaches 10% of the current pulsar spin down power. The synchrotron nebula has a size of 1 pc and contains an unresolved point-like X-ray source, probably the pulsar with its wind termination shock.Comment: A&A accepted, 9 pages, 5 figures, 4 table

    Non-thermal high-energy emission from colliding winds of massive stars

    Full text link
    Colliding winds of massive star binary systems are considered as potential sites of non-thermal high-energy photon production. This is motivated merely by the detection of synchrotron radio emission from the expected colliding wind location. Here we investigate the properties of high-energy photon production in colliding winds of long-period WR+OB-systems. We found that in the dominating leptonic radiation process anisotropy and Klein-Nishina effects may yield spectral and variability signatures in the gamma-ray domain at or above the sensitivity of current or upcoming gamma-ray telescopes. Analytical formulae for the steady-state particle spectra are derived assuming diffusive particle acceleration out of a pool of thermal wind particles, and taking into account adiabatic and all relevant radiative losses. For the first time we include their advection/convection in the wind collision zone, and distinguish two regions within this extended region: the acceleration region where spatial diffusion is superior to convective/advective motion, and the convection region defined by the convection time shorter than the diffusion time scale. The calculation of the Inverse Compton radiation uses the full Klein-Nishina cross section, and takes into account the anisotropic nature of the scattering process. This leads to orbital flux variations by up to several orders of magnitude which may, however, be blurred by the geometry of the system. The calculations are applied to the typical WR+OB-systems WR 140 and WR 147 to yield predictions of their expected spectral and temporal characteristica and to evaluate chances to detect high-energy emission with the current and upcoming gamma-ray experiments. (abridged)Comment: 67 pages, 24 figures, submitted to Ap

    Demonstrating the feasibility of standardized application program interfaces that will allow mobile/portable terminals to receive services combining UMTS and DVB-T

    Get PDF
    Crucial to the commercial exploitation of any service combining UMTS and DVB-T is the availability of standardized API’s adapted to the hybrid UMTS and DVB-T network and to the technical limitations of mobile/portable terminals. This paper describes work carried out in the European Commission Framework Program 5 (FP5) project CONFLUENT to demonstrate the feasibility of such Application Program Interfaces (API’s) by enabling the reception of a Multimedia Home Platform (MHP) based application transmitted over DVB-T on five different terminals with parts of the service running on a mobile phone

    A current driven instability in parallel, relativistic shocks

    Full text link
    Recently, Bell has reanalysed the problem of wave excitation by cosmic rays propagating in the pre-cursor region of a supernova remnant shock front. He pointed out a strong, non-resonant, current-driven instability that had been overlooked in the kinetic treatments, and suggested that it is responsible for substantial amplification of the ambient magnetic field. Magnetic field amplification is also an important issue in the problem of the formation and structure of relativistic shock fronts, particularly in relation to models of gamma-ray bursts. We have therefore generalised the linear analysis to apply to this case, assuming a relativistic background plasma and a monoenergetic, unidirectional incoming proton beam. We find essentially the same non-resonant instability noticed by Bell, and show that also under GRB conditions, it grows much faster than the resonant waves. We quantify the extent to which thermal effects in the background plasma limit the maximum growth rate.Comment: 8 pages, 1 figur

    Limits on Supersymmetric Dark Matter From EGRET Observations of the Galactic Center Region

    Get PDF
    In most supersymmetic models, neutralino dark matter particles are predicted to accumulate in the Galactic center and annihilate generating, among other products, gamma rays. The EGRET experiment has made observations in this region, and is sensitive to gamma rays from 30 MeV to ∼\sim30 GeV. We have used an improved point source analysis including an energy dependent point spread function and an unbinned maximum likelihood technique, which has allowed us to significantly lower the limits on gamma ray flux from the Galactic center. We find that the present EGRET data can limit many supersymmetric models if the density of the Galactic dark matter halo is cuspy or spiked toward the Galactic center. We also discuss the ability of GLAST to test these models.Comment: 4 pages, 3 figure
    • …
    corecore