100 research outputs found

    Components of Antineutrino Emission in Nuclear Reactor

    Full text link
    New νˉe,e{\bar{\nu}_e},e scattering experiments aimed for sensitive searches of the νe{\nu}_e magnetic moment and projects to explore small mixing angle oscillations at reactors call for a better understanding of the reactor antineutrino spectrum. Here we consider six components, which contribute to the total νˉe{\bar{\nu}_e} spectrum generated in nuclear reactor. They are: beta decay of the fission fragments of 235^{235}U, 239^{239}Pu, 238^{238}U and 241^{241}Pu, decay of beta-emitters produced as a result of neutron capture in 238^{238}U and also due to neutron capture in accumulated fission fragments which perturbs the spectrum. For antineutrino energies less than 3.5 MeV we tabulate evolution of νˉe{\bar{\nu}_e} spectra corresponding to each of the four fissile isotopes vs fuel irradiation time and their decay after the irradiation is stopped and also estimate relevant uncertainties. Small corrections to the ILL spectra are considered.Comment: LaTex 8 pages, 2 ps figure

    Real non-degenerate two-step nilpotent Lie algebras of dimension eight

    Full text link
    We classify the non-degenerate two-step nilpotent Lie algebras of dimension 8 over the field R of real numbers, using results of Galitski and Timashev over complex numbers. We write explicit structure constants for these real Lie algebras.Comment: 21 pages; comments are welcome

    Scattering properties of singular and aggregate atmospheric hexagonal ice particles

    Get PDF
    This paper presents the results of calculating and analyzing the light scattering matrix of aggregates of atmospheric hexagonal ice particles located in cirrus clouds. Two types of basic particle shapes for aggregates are considered: a hexagonal column and a hexagonal plate. For both forms, two types of particle arrangement in aggregates were chosen: compact and non-compact. As a result, 4 sets of aggregates were built: compact hexagonal columns, non-compact hexagonal columns, compact hexagonal plates, and non-compact hexagonal plates. Each set consists of 9 aggregates differing in the number of particles in them, and the particles in each individual aggregate have the same shape and size, but different spatial orientation. The light scattering matrices for all aggregates were calculated for the case of arbitrary orientation in the geometric optics approximation. Dependences of the first element of the matrix on the number of particles in aggregate, with different types of particle arrangement, and for two types of shapes are give

    Data bank of light backscattering matrices for atmospheric ice crystals of non-convex shape for wavelengths 0.355, 0.532, 1.064 μm

    Get PDF
    This paper presents the results of calculation and analyzes the light scattering matrix of random oriented ice particles of non-convex shape (hollow column) with cavity angles from 0 to 50 degrees for lidar wavelengths of 0.355, 0.532, and 1.064 microns and refractive indices of 1.3249, 1.3116, and 1.3004. The calculation was carried out within both physical and geometrical optics approximation methods for particle sizes varied from 10 to 100 microns. As a result, it is shown that differential scattering cross-section for non-convex shape (hollow column) demonstrates a power-law dependence on the particle size. However, the linear depolarization ratio has no simple dependence on particle size and is practically independent of wavelength for small particles (L<50 μm). The linear depolarization ratio increases from 0.2 up to 0.5–0.8 with an increase of the cavity angle of the crystal. The elements of the light scattering matrix depending on scattering and cavity angle are give

    Calculation of the lidar signal by the DDA method applied to the data of satellite remote sensing of cirrus clouds for climate change detection

    Get PDF
    The purpose of this work is to solve an important issue: the light scattering problem for ice crystals of cirrus clouds less than 10 μm and matching the obtained solution with the existing solution obtained within the physical optics approximation. The article presents a solution to the problem of light scattering by hexagonal ice particles of cirrus clouds with sizes from 0.05 to 5.17 μm for a wavelength 0.532 μm, obtained within the discrete dipole approximation. It is found that the obtained solution is in good agreement with the physical optics approximation in the vicinity of scattering angles of 0–10є (the vicinity of forward direction scattering). However, to solve the problem of light scattering in the vicinity of the backward scattering direction, which is important for the interpretation of lidar data, it is necessary to continue the calculations to sizes of the order of 20 μm. The results obtained are necessary for constructing algorithms for the interpretation of lidar data obtained by sounding cirrus clouds

    Radar-lidar ratio for ice crystals of cirrus clouds

    Get PDF
    Simultaneous measurement of lidar and radar signals returned from the same cirrus clouds is a prospective method for retrieving the cloud microphysics, i.e. size and shape of the ice crystals constituting the clouds. In this study, the ratio of the backscattered signals of lidar and radar called the radar-lidar ratio has been calculated for the ʱrst time for typical shapes of ice crystals and wide distribution of the crystals over their sizes. It is shown that it is the lidar-radar ratio that is most sensitive to crystal sizes while the lidar depolarization ratio is most sensitive to crystal shape

    Polarization lidars with conical scanning for retrieving the microphysical characteristics of cirrus clouds

    Get PDF
    The paper presents the first results of observations of cirrus clouds by polarization lidars with conical scanning, which were developed in Hefei (China) and in Tomsk (Russia). The light scattering matrix of ice crystal particles of cirrus clouds has been calculated for the first by the authors within the framework of the physical optics approximations in the case of conical scanning lidar. It is found that in this case the Mueller matrix consists of ten non-zero elements, four of which are small and can’t be applied to interpret the azimuthal distribution of particle orientation. All the diagonal elements have a strong azimuthal dependence. Among the off-diagonal elements only one element M34 carries additional information for interpreting the azimuthal distribution. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only
    corecore