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ABSTRACT 

This paper presents the results of calculation and analyzes the light scattering matrix of random oriented ice particles of 

non-convex shape (hollow column) with cavity angles from 0 to 50 degrees for lidar wavelengths of 0.355, 0.532, and 

1.064 microns and refractive indices of 1.3249, 1.3116, and 1.3004. The calculation was carried out within both physical 

and geometrical optics approximation methods for particle sizes varied from 10 to 100 microns. As a result, it is shown 

that differential scattering cross-section for non-convex shape (hollow column) demonstrates a power-law dependence 

on the particle size. However, the linear depolarization ratio has no simple dependence on particle size and is practically 

independent of wavelength for small particles (L<50 μm). The linear depolarization ratio increases from 0.2 up to 0.5–

0.8 with an increase of the cavity angle of the crystal. The elements of the light scattering matrix depending on scattering 

and cavity angle are given. 
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1. INTRODUCTION 

Recent climatic changes dictate the need for a closer and more detailed study of climate-forming factors and their 

relationship within the climate system as a whole
1-13

. Cirrus clouds are one of the main sources of uncertainty in modern 

climate models and long-term weather forecasting
14,15

. These clouds are composed of ice particles with a whole variety 

of shapes and sizes
16,17

. 

The problem of light scattering on particles of liquid-droplet clouds is solved without the involvement of large 

computational resources by algorithms based on the Lorenz–Mie–Debye theory of light scattering
18

. However, 

nonspherical particles, such as cirrus cloud crystals, scatter light specifically and require new approaches
19,20

. In addition, 

they vary not only in size but in shape
16,17

. Since the shape of the ice particles is nonspherical, there is spatial orientation 

of the particle
21

. 

In this regard, in order to completely solve the problem of scattering on ice particles of cirrus clouds, it is necessary to 

obtain a solution to the problem on particles of all possible shapes, and for all possible spatial orientations, in the particle 

size range typical for such clouds. All this leads to serious requirements for computing resources. 

It should be noted that it is exactly the backscattering direction that is of practical interest since it is necessary for the 

interpretation of laser remote sensing data
22

. That is why, at the present day, the only method applicable to lidar 

wavelengths is the physical optics approximation method
23

, which makes it possible to obtain a solution to the problem 

of light scattering by atmospheric ice particles in the entire required size range: from 10 to 1000 microns
24

. 

2. METHOD 

The numerical solution of the problem of light scattering for the whole variety of shapes and sizes of atmospheric ice 

crystals is carried out at the V.E. Zuev Institute of Atmospheric Optics SB RAS (IAO SB RAS) within both physical and 

geometrical optics approximation methods for many years
24

. The results of this work led to the creation of a unique 

databank of light backscattering matrices
25

. 
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Earlier, the database of light backscattering matrices was created with these methods for the main types of ideal 

atmospheric ice crystals, such as hexagonal plates and columns, droxtals, and bullets. However, the results of numerical 

modeling for regular crystal particles showed a disagreement with the experimental data in some individual cases, which 

did not allow constructing algorithms for the interpretation of lidar data
22

. 

3. PHYSICAL OPTICS APPROXIMATION 

In this work, the calculation of optical characteristics of light backscattering for random oriented ice particles of non-

convex shape (hollow column
16

) with cavity angles from 0 to 50 degrees for lidar wavelengths of 0.355, 0.532, and 1.064 

microns and refractive indices of 1.3249, 1.3116, and 1.3004. The calculations were carried out within the physical 

optics approximation
26

. Particle sizes varied from 10 to 100 microns correspond to the microphysical model of 

Mitchell
27

. The calculation results of optical characteristics of light backscattering are presented in Fig. 1–4. According 

to Fig. 1–2, the differential scattering cross-section demonstrates a power-law dependence on the particle size. 

Figures 3–4 demonstrate that the depolarization ratio has no power dependence on particle size and is practically 

independent of wavelength for small particles (L<50 μm). However, the calculated linear depolarization ratio shows an 

increase from 0.2 up to 0.5–0.8 with an increase in the cavity angle of the crystal. In the case of calculation light 

scattering matrix depending on scattering angle for large particles the physical optics approximation becomes very 

computationally expensive. In this case the geometrical optics approximation looks reasonable. 

 

  

Figure 1. Calculated backscattering cross-section depending on particle size and cavity angle. The wavelength of the 

incident light is 0.355 μm. 

   

Figure 2. Calculated backscattering cross-section depending on particle size and cavity angle. The wavelength of the 

incident light is: 0.532 μm (left), 1.064 μm (right). 
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Figure 3. Calculated depolarization ratio depending on particle size and cavity angle. The wavelength of the incident light is 

0.355 μm. 

  

Figure 4. Calculated depolarization ratio depending on particle size and cavity angle. The wavelength of the incident light is: 

0.532 μm (left), 1.064 μm (right). 

4. GEOMETRICAL OPTICS APPROXIMATION 

The calculation of light scattering matrix depending on scattering angle was carried out within the framework of the 

geometric optics approximation
26

 for a wavelength of 0.532 μm and refractive index – 1.3116. The calculation was 

carried out for random oriented hollow columns with dimensions of 100 μm in height and 69.6 μm in diameter with 

cavity angles from 0 to 50 degrees. Figures 5–9 demonstrates some elements of the calculated scattering matrix as an 

example. 

 

Figure 5. Calculated differential scattering cross-section depending on scattering and cavity angle. The wavelength of the 

incident light is 0.532 μm. 
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The calculated differential scattering cross-section shown in Fig. 5 demonstrates the destruction of the atmospheric halo 

46º with increasing cavity angle of the crystal. At the same time, atmospheric halo 22º remains unchanged. At the cavity 

angles of the crystal more than 30º, a peak of 12º begins to form. The polarization elements of the light scattering matrix 

also show unpredictable behavior, see Fig. 6–9. 

 

Figure 6. Calculated element m12 of the light scattering matrix depending on scattering and cavity angle. The wavelength of 

the incident light is 0.532 μm. 

 

Figure 7. Calculated element m22 of the light scattering matrix depending on scattering and cavity angle. The wavelength of 

the incident light is 0.532 μm. 

 

Figure 8. Calculated element m34 of the light scattering matrix depending on scattering and cavity angle. The wavelength of 

the incident light is 0.532 μm. 
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Figure 9. Calculated element m44 of the light scattering matrix depending on scattering and cavity angle. The wavelength of 

the incident light is 0.532 μm. 

 

CONCLUSIONS 

It is shown that differential scattering cross-section for non-convex shape (hollow column) demonstrates a power-law 

dependence on the particle size. However, the linear depolarization ratio has no power dependence on particle size and is 

practically independent of wavelength for small particles (L<50 μm) and shows an increase from 0.2 up to 0.5–0.8 with 

an increase in the cavity angle of the crystal. The elements of the light scattering matrix depending on scattering and 

cavity angle are given. The databank of light scattering matrices for atmospheric ice crystals which non-convex shapes 

will improve the quality of lidar data interpretation. 
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