22,957 research outputs found
Path Integral Approach to Strongly Nonlinear Composite
We study strongly nonlinear disordered media using a functional method. We
solve exactly the problem of a nonlinear impurity in a linear host and we
obtain a Bruggeman-like formula for the effective nonlinear susceptibility.
This formula reduces to the usual Bruggeman effective medium approximation in
the linear case and has the following features: (i) It reproduces the weak
contrast expansion to the second order and (ii) the effective medium exponent
near the percolation threshold are , , where is the
nonlinearity exponent. Finally, we give analytical expressions for previously
numerically calculated quantities.Comment: 4 pages, 1 figure, to appear in Phys. Rev.
Physical structure of P(VDF-TrFE)/barium titanate submicron composites
Dynamic Dielectric Spectroscopy and Thermo Stimulated Current were used to investigate of the dielectric relaxation of hybrid Poly(vinylidene-fluoride-trifluoroethylene)/barium titanate 700 nm composites with 0–3 connectivity. The results obtained by this method allow us to describe the physical structure of these composites in the glassy state at a nanometric scale. The decrease of the activation enthalpies and activation entropies involved in the dynamics of the α relaxation is attributed to: the decrease of Cooperative Rearranging Region sizes and an increase of intra/inter macromolecular interactions in the amorphous phase with the volume fraction
Scattering loss in electro-optic particulate composite materials
The effective permittivity dyadic of a composite material containing
particulate constituent materials with one constituent having the ability to
display the Pockels effect is computed, using an extended version of the
strong-permittivity-fluctuation theory which takes account of both the
distributional statistics of the constituent particles and their sizes.
Scattering loss, thereby incorporated in the effective electromagnetic response
of the homogenized composite material, is significantly affected by the
application of a low-frequency (dc) electric field
Theory of electrical conductivities of ferrogels
Conductive organic polymers can be formulated with polymers that incorporate
fine dispersed metallic particles.
In this work, we present a general model for ferrogels which are chemically
cross-linked polymer networks swollen with a ferrofluid. Our aim is to study
the effect of the shape and/or material (conductivity) anisotropy on the
effective electrical conductivity of the ferrogel in the presence of an
external magnetic field. Our theory can reproduce the known results, and
provides a link between the particle property and orientation distribution and
the effective electrical conductivity. To this end, we find that material
(conductivity) anisotropies are more important to yield a high effective
electrical conductivity than shape anisotropies, while magnetic fields can
offer a correction.Comment: 15 pages, 2 figure
Liquid n-hexane condensed in silica nanochannels: A combined optical birefringence and vapor sorption isotherm study
The optical birefringence of liquid n-hexane condensed in an array of
parallel silica channels of 7nm diameter and 400 micrometer length is studied
as a function of filling of the channels via the vapor phase. By an analysis
with the generalized Bruggeman effective medium equation we demonstrate that
such measurements are insensitive to the detailed geometrical (positional)
arrangement of the adsorbed liquid inside the channels. However, this technique
is particularly suitable to search for any optical anisotropies and thus
collective orientational order as a function of channel filling. Nevertheless,
no hints for such anisotropies are found in liquid n-hexane. The n-hexane
molecules in the silica nanochannels are totally orientationally disordered in
all condensation regimes, in particular in the film growth as well as in the
the capillary condensed regime. Thus, the peculiar molecular arrangement found
upon freezing of liquid n-hexane in nanochannel-confinement, where the
molecules are collectively aligned perpendicularly to the channels' long axes,
does not originate in any pre-alignment effects in the nanoconfined liquid due
to capillary nematization.Comment: 7 pages, 5 figure
- …