22,957 research outputs found

    Path Integral Approach to Strongly Nonlinear Composite

    Full text link
    We study strongly nonlinear disordered media using a functional method. We solve exactly the problem of a nonlinear impurity in a linear host and we obtain a Bruggeman-like formula for the effective nonlinear susceptibility. This formula reduces to the usual Bruggeman effective medium approximation in the linear case and has the following features: (i) It reproduces the weak contrast expansion to the second order and (ii) the effective medium exponent near the percolation threshold are s=1s=1, t=1+κt=1+\kappa, where κ\kappa is the nonlinearity exponent. Finally, we give analytical expressions for previously numerically calculated quantities.Comment: 4 pages, 1 figure, to appear in Phys. Rev.

    Physical structure of P(VDF-TrFE)/barium titanate submicron composites

    Get PDF
    Dynamic Dielectric Spectroscopy and Thermo Stimulated Current were used to investigate of the dielectric relaxation of hybrid Poly(vinylidene-fluoride-trifluoroethylene)/barium titanate 700 nm composites with 0–3 connectivity. The results obtained by this method allow us to describe the physical structure of these composites in the glassy state at a nanometric scale. The decrease of the activation enthalpies and activation entropies involved in the dynamics of the α relaxation is attributed to: the decrease of Cooperative Rearranging Region sizes and an increase of intra/inter macromolecular interactions in the amorphous phase with the volume fraction

    Scattering loss in electro-optic particulate composite materials

    Get PDF
    The effective permittivity dyadic of a composite material containing particulate constituent materials with one constituent having the ability to display the Pockels effect is computed, using an extended version of the strong-permittivity-fluctuation theory which takes account of both the distributional statistics of the constituent particles and their sizes. Scattering loss, thereby incorporated in the effective electromagnetic response of the homogenized composite material, is significantly affected by the application of a low-frequency (dc) electric field

    Theory of electrical conductivities of ferrogels

    Full text link
    Conductive organic polymers can be formulated with polymers that incorporate fine dispersed metallic particles. In this work, we present a general model for ferrogels which are chemically cross-linked polymer networks swollen with a ferrofluid. Our aim is to study the effect of the shape and/or material (conductivity) anisotropy on the effective electrical conductivity of the ferrogel in the presence of an external magnetic field. Our theory can reproduce the known results, and provides a link between the particle property and orientation distribution and the effective electrical conductivity. To this end, we find that material (conductivity) anisotropies are more important to yield a high effective electrical conductivity than shape anisotropies, while magnetic fields can offer a correction.Comment: 15 pages, 2 figure

    Liquid n-hexane condensed in silica nanochannels: A combined optical birefringence and vapor sorption isotherm study

    Full text link
    The optical birefringence of liquid n-hexane condensed in an array of parallel silica channels of 7nm diameter and 400 micrometer length is studied as a function of filling of the channels via the vapor phase. By an analysis with the generalized Bruggeman effective medium equation we demonstrate that such measurements are insensitive to the detailed geometrical (positional) arrangement of the adsorbed liquid inside the channels. However, this technique is particularly suitable to search for any optical anisotropies and thus collective orientational order as a function of channel filling. Nevertheless, no hints for such anisotropies are found in liquid n-hexane. The n-hexane molecules in the silica nanochannels are totally orientationally disordered in all condensation regimes, in particular in the film growth as well as in the the capillary condensed regime. Thus, the peculiar molecular arrangement found upon freezing of liquid n-hexane in nanochannel-confinement, where the molecules are collectively aligned perpendicularly to the channels' long axes, does not originate in any pre-alignment effects in the nanoconfined liquid due to capillary nematization.Comment: 7 pages, 5 figure
    corecore