3,933 research outputs found
Power Density Spectra of Gamma-Ray Bursts in the Internal Shock Model
We simulate Gamma-Ray Bursts arising from internal shocks in relativistic
winds, calculate their power density spectrum (PDS), and identify the factors
to which the PDS is most sensitive: the wind ejection features, which determine
the wind dynamics and its optical thickness, and the energy release parameters,
which give the pulse 50-300 keV radiative efficiency. For certain combinations
of ejection features and wind parameters the resulting PDS exhibits the
features observed in real bursts. We found that the upper limit on the
efficiency of conversion of wind kinetic energy into 50-300 keV photons is
1%. Winds with a modulated Lorentz factor distribution of the ejecta
yield PDSs in accord with current observations and have efficiencies closer to
, while winds with a random, uniform Lorentz factor ejection must be
optically thick to the short duration pulses to produce correct PDSs, and have
an overall efficiency around .Comment: 6 pages, 4 figures, Latex, submitted to The Astrophysical Journal
(05/04/99
Activity cycles in members of young loose stellar associations
Magnetic cycles have been detected in tens of solar-like stars. The
relationship between the cycle properties and global stellar parameters is not
fully understood yet.
We searched for activity cycles in 90 solar-like stars with ages between 4
and 95 Myr aiming to investigate the properties of activity cycles in this age
range.
We measured the length of a given cycle by analyzing the long-term
time-series of three activity indexes. For each star, we computed also the
global magnetic activity index that is proportional to the amplitude of
the rotational modulation and is a proxy of the mean level of the surface
magnetic activity. We detected activity cycles in 67 stars. Secondary cycles
were also detected in 32 stars. The lack of correlation between and
suggest that these stars belong to the Transitional Branch and that
the dynamo acting in these stars is different from the solar one. This
statement is also supported by the analysis of the butterfly diagrams.
We computed the Spearman correlation coefficient between ,
and different stellar parameters. We found that is
uncorrelated with all the investigated parameters. The index is
positively correlated with the convective turn-over time-scale, the magnetic
diffusivity time-scale , and the dynamo number , whereas
it is anti-correlated with the effective temperature , the
photometric shear and the radius at which
the convective zone is located.
We found that is about constant and that decreases with the
stellare age in the range 4-95 Myr. We investigated the magnetic activity of AB
Dor A by merging ASAS time-series with previous long-term photometric data. We
estimated the length of the AB Dor A primary cycle as .Comment: 19 pages , 15 figures, accepte
Evidence of New Magnetic Transitions in Late-Type Dwarfs from Gaia DR2
The second Gaia data release contains the identification of 147 535 low-mass
() rotational modulation variable candidates on (or close
to) the main sequence, together with their rotation period and modulation
amplitude. The richness, the period and amplitude range, and the photometric
precision of this sample make it possible to unveil, for the first time,
signatures of different surface inhomogeneity regimes in the amplitude-period
density diagram. The modulation amplitude distribution shows a clear
bimodality, with an evident gap at periods d. The low amplitude
branch, in turn, shows a period bimodality with a main clustering at periods 5 - 10 d and a secondary clustering of ultra-fast rotators at d. The amplitude-period multimodality is correlated with the position in
the period-absolute magnitude (or period-color) diagram, with the low- and
high-amplitude stars occupying different preferential locations. Here we argue
that such a multimodality represents a further evidence of the existence of
different regimes of surface inhomogeneities in young and middle-age low-mass
stars and we lay out possible scenarios for their evolution, which manifestly
include rapid transitions from one regime to another. In particular, the data
indicate that stars spinning up close to break-up velocity undergo a very rapid
change in their surface inhomogeneities configuration, which is revealed here
for the first time. The multimodality can be exploited to identify field stars
of age 100 -- 600 Myr belonging to the slow-rotator low-amplitude
sequence, for which age can be estimated from the rotation period via
gyrochronology relationships.Comment: 15 pages, 6 figures, Accepted by Ap
Lower limit for differential rotation in members of young loose stellar associations
Surface differential rotation (SDR) plays a key role in dynamo models. SDR
estimates are therefore essential for constraining theoretical models. We
measure a lower limit to SDR in a sample of solar-like stars belonging to young
associations with the aim of investigating how SDR depends on global stellar
parameters in the age range (4-95 Myr). The rotation period of a solar-like
star can be recovered by analyzing the flux modulation caused by dark spots and
stellar rotation. The SDR and the latitude migration of dark-spots induce a
modulation of the detected rotation period. We employ long-term photometry to
measure the amplitude of such a modulation and to compute the quantity
DeltaOmega_phot =2p/P_min -2pi/P_max that is a lower limit to SDR. We find that
DeltaOmega_phot increases with the stellar effective temperature and with the
global convective turn-over time-scale tau_c. We find that DeltaOmega_phot is
proportional to Teff^2.18pm 0.65 in stars recently settled on the ZAMS. This
power law is less steep than those found by previous authors, but closest to
recent theoretical models. We find that DeltaOmega_phot steeply increases
between 4 and 30 Myr and that itis almost constant between 30 and 95 Myr in a 1
M_sun star. We find also that the relative shear increases with the Rossby
number Ro. Although our results are qualitatively in agreement with
hydrodynamical mean-field models, our measurements are systematically higher
than the values predicted by these models. The discrepancy between
DeltaOmega_phot measurements and theoretical models is particularly large in
stars with periods between 0.7 and 2 d. Such a discrepancy, together with the
anomalous SDR measured by other authors for HD 171488 (rotating in 1.31 d),
suggests that the rotation period could influence SDR more than predicted by
the models.Comment: 23 pages, 15 figures, 5 tables,accepted by Astronomy and Astrophysic
Lithium abundance and 6Li/7Li ratio in the active giant HD123351 I. A comparative analysis of 3D and 1D NLTE line-profile fits
Current three-dimensional (3D) hydrodynamical model atmospheres together with
NLTE spectrum synthesis, permit to derive reliable atomic and isotopic chemical
abundances from high-resolution stellar spectra. Not much is known about the
presence of the fragile 6Li isotope in evolved solar-metallicity RGB stars, not
to mention its production in magnetically active targets like HD123351. From
fits of the observed CFHT spectrum with synthetic line profiles based on 1D and
3D model atmospheres, we seek to estimate the abundance of the 6Li isotope and
to place constraints on its origin. We derive A(Li) and the 6Li/7Li isotopic
ratio by fitting different synthetic spectra to the Li-line region of a
high-resolution CFHT spectrum (R=120 000, S/R=400). The synthetic spectra are
computed with four different line lists, using in parallel 3D hydrodynamical
CO5BOLD and 1D LHD model atmospheres and treating the line formation of the
lithium components in non-LTE (NLTE). We find A(Li)=1.69+/-0.11 dex and
6Li/7Li=8.0+/-4.4 % in 3D-NLTE, using the line list of Mel\'endez et al.
(2012), updated with new atomic data for V I, which results in the best fit of
the lithium line profile of HD123351. Two other line lists lead to similar
results but with inferior fit qualities. Our 2-sigma detection of the 6Li
isotope is the result of a careful statistical analysis and the visual
inspection of each achieved fit. Since the presence of a significant amount of
6Li in the atmosphere of a cool evolved star is not expected in the framework
of standard stellar evolution theory, non-standard, external lithium production
mechanisms, possibly related to stellar activity or a recent accretion of rocky
material, need to be invoked to explain the detection of 6Li in HD123351.Comment: 16 pages, 11 figures. Accepted for publication in A&
G protein mutations in endocrine diseases
This review summarizes the pathogenetic role of naturally occurring mutations of G protein genes in endocrine diseases. Although in vitro mutagenesis and transfection assays indicate that several G proteins have mitogenic potential, to date only two G proteins have been identified which harbor naturally occurring mutations, Gs\u3b1, the activator of adenylyl cyclase and Gi2\u3b1, which is involved in several functions, including adenylyl cyclase inhibition and ion channel modulation. The gene encoding Gs\u3b1 (GNAS1) may be altered by loss or gain of function mutations. Indeed, heterozygous inactivating germ line mutations in this gene cause pseudohypoparathyroidism type Ia, in which physical features of Albright hereditary osteodystrophy (AHO) are associated with resistance to several hormones, i.e. PTH, TSH and gonadotropins, that activate Gs-coupled receptors or pseudopseudohypoparathyroidism in which AHO is the only clinical manifestation. Evidence suggests that the variable and tissue-specific hormone resistance observed in PHP Ia may result from tissue-specific imprinting of the GNAS1 gene, although the Gs\u3b1 knockout model only in part reproduces the human AHO phenotype. Activating somatic Gs\u3b1 mutations leading to cell proliferation have been identified in endocrine tumors constituted by cells in which cAMP is a mitogenic signal, i.e. GH-secreting pituitary adenomas, hyperfunctioning thyroid adenomas and Leydig cell tumors. When the same mutations occur very early in embryogenesis they cause McCune-Albright syndrome. Although these mutations would in principle confer growth advantage, studies failed to detect differences in the clinical and hormonal phenotypes, suggesting the existence of mechanisms able to counteract the activation of the cAMP pathway. Activating mutations of Gi2\u3b1 have been identified in a subset of ovarian, adrenal and pituitary tumors, but their prevalence and significance are still controversial. Finally, although G\u3b1 subunits are the only components of the heterotrimeric GTP binding proteins which harbor known mutations, \u3b2/\u3b3 subunits should be considered possible targets of genetic alterations as suggested by the frequent presence of \u3b23 subunit variants in patients with essential hypertension
The Impact of Education and Culture on Poverty Reduction: Evidence from Panel Data of European Countries
The 2030 Agenda has among its key objectives the poverty eradication through increasing the level of education. A good level of education and investment in culture of a country is in fact necessary to guarantee a sustainable economy, in which coexists satisfactory levels of quality of life and an equitable distribution of income. There is a lack of studies in particular on the relations between some significant dimensions, such as education, culture and poverty, considering time lags for the measurement of impacts. Therefore, this study aims to fill this gap by focusing on the relationship between education, culture and poverty based on a panel of data from 34 European countries, over a 5-year period, 2015–2019. For this purpose, after applying principal component analysis to avoid multicollinearity problems, the authors applied three different approaches: pooled-ordinary least squares model, fixed effect model and random effect model. Fixed-effects estimator was selected as the optimal and most appropriate model. The results highlight that increasing education and culture levels in these countries reduce poverty. This opens space to new research paths and policy strategies that can start from this connection to implement concrete actions aimed at widening and improving educational and cultural offer
Analysis of Temporal Features of Gamma Ray Bursts in the Internal Shock Model
In a recent paper we have calculated the power density spectrum of Gamma-Ray
Bursts arising from multiple shocks in a relativistic wind. The wind optical
thickness is one of the factors to which the power spectrum is most sensitive,
therefore we have further developed our model by taking into account the photon
down-scattering on the cold electrons in the wind. For an almost optically
thick wind we identify a combination of ejection features and wind parameters
that yield bursts with an average power spectrum in agreement with the
observations, and with an efficiency of converting the wind kinetic energy in
50-300 keV emission of order 1%. For the same set of model features the
interval time between peaks and pulse fluences have distributions consistent
with the log-normal distribution observed in real bursts.Comment: ApJ in press, 2000; with slight revisions; 12 pag, 6 fi
- …