584 research outputs found
Cavity Light Bullets: 3D Localized Structures in a Nonlinear Optical Resonator
We consider the paraxial model for a nonlinear resonator with a saturable
absorber beyond the mean-field limit and develop a method to study the
modulational instabilities leading to pattern formation in all three spatial
dimensions. For achievable parametric domains we observe total radiation
confinement and the formation of 3D localised bright structures. At difference
from freely propagating light bullets, here the self-organization proceeds from
the resonator feedback, combined with diffraction and nonlinearity. Such
"cavity" light bullets can be independently excited and erased by appropriate
pulses, and once created, they endlessly travel the cavity roundtrip. Also, the
pulses can shift in the transverse direction, following external field
gradients.Comment: 4 pages, 3 figures, simulations files available at
http://www.ba.infn.it/~maggipin/PRLmovies.htm, submitted to Physical Review
Letters on 24 March 200
Generation of unipolar pulses in a circular Raman-active medium excited by few-cycle optical pulses
We study theoretically a new possibility of unipolar pulses generation in
Raman-active medium excited by a series of few-cycle optical pulses. We
consider the case when the Raman-active particles are uniformly distributed
along the circle, and demonstrate a possibility to obtain a unipolar
rectangular video pulses with an arbitrarily long duration, ranging from a
minimum value equal to the natural period of the low frequency vibrations in
the Raman-active medium
Dissipative solitons which cannot be trapped
In this paper we study the behavior of dissipative solitons in systems with
high order nonlinear dissipation and show how they cannot survive under the
effect of trapping potentials both of rigid wall type or asymptotically
increasing ones. This provides an striking example of a soliton which cannot be
trapped and only survives to the action of a weak potential
Nonlinear switching and solitons in PT-symmetric photonic systems
One of the challenges of the modern photonics is to develop all-optical
devices enabling increased speed and energy efficiency for transmitting and
processing information on an optical chip. It is believed that the recently
suggested Parity-Time (PT) symmetric photonic systems with alternating regions
of gain and loss can bring novel functionalities. In such systems, losses are
as important as gain and, depending on the structural parameters, gain
compensates losses. Generally, PT systems demonstrate nontrivial
non-conservative wave interactions and phase transitions, which can be employed
for signal filtering and switching, opening new prospects for active control of
light. In this review, we discuss a broad range of problems involving nonlinear
PT-symmetric photonic systems with an intensity-dependent refractive index.
Nonlinearity in such PT symmetric systems provides a basis for many effects
such as the formation of localized modes, nonlinearly-induced PT-symmetry
breaking, and all-optical switching. Nonlinear PT-symmetric systems can serve
as powerful building blocks for the development of novel photonic devices
targeting an active light control.Comment: 33 pages, 33 figure
Mutual maintenance of di- and triploid Pelophylax esculentus hybrids in R-E systems: results fro
Background: Interspecies animal hybrids can employ clonal or hemiclonal reproduction modes where one or all
parental genomes are transmitted to the progeny without recombination. Nevertheless, some interspecies
hybrids retain strong connection with the parental species needed for successful reproduction. Appearance of
polyploid hybrid animals may play an important role in the substitution of parental species and in the
speciation process.
Results: To establish the mechanisms that enable parental species, diploid and polyploid hybrids coexist we
have performed artificial crossing experiments of water frogs of Pelophylax esculentus complex. We identified
tadpole karyotypes and oocyte genome composition in all females involved in the crossings. The majority of
diploid and triploid hybrid frogs produced oocytes with 13 bivalents leading to haploid gametes with the
same genome as parental species hybrids usually coexist with. After fertilization of such gametes only diploid
animals appeared. Oocytes with 26 bivalents produced by some diploid hybrid frogs lead to diploid gametes,
which give rise to triploid hybrids after fertilization. In gonads of all diploid and triploid hybrid tadpoles we
found DAPI-positive micronuclei (nucleus-like bodies) involved in selective genome elimination. Hybrid male
and female individuals produced tadpoles with variable karyotype and ploidy even in one crossing owing to
gametes with various genome composition.
Conclusions: We propose a model of diploid and triploid hybrid frog reproduction in R-E population systems.
Triploid Pelophylax esculentus hybrids can transmit genome of parental species they coexist with by producing
haploid gametes with the same genome composition. Triploid hybrids cannot produce triploid individuals
after crossings with each other and depend on diploid hybrid females producing diploid eggs. In contrast to
other population systems, the majority of diploid and triploid hybrid females unexpectedly produced gametes
with the same genome as parental species hybrids coexist with
Stable autosolitons in dispersive media with saturable gain and absorption
We introduce the simplest one-dimensional model of a dispersive optical
medium with saturable dissipative nonlinearity and filtering (dispersive loss)
which gives rise to stable solitary pulses (autosolitons). In the particular
case when the dispersive loss is absent, the same model may also be interpreted
as describing a stationary field in a planar optical waveguide with uniformly
distributed saturable gain and absorption. In a certain region of the model's
parameter space, two coexisting solitary-pulse solutions are found numerically,
one of which may be stable. Solving the corresponding linearized eigenvalue
problem, we identify stability borders for the solitary pulses in their
parametric plane. Beyond one of the borders, the symmetric pulse is destroyed
by asymmetric perturbations, and at the other border it undergoes a Hopf
bifurcation, which may turn it into a breather.Comment: A latex text file and four ps files with figures. Physics Letters A,
in pres
Generation of unipolar half-cycle pulse via unusual reflection of a single-cycle pulse from an optically thin metallic or dielectric layer
We present a significantly different reflection process from an optically
thin flat metallic or dielectric layer and propose a strikingly simple method
to form approximately unipolar half-cycle optical pulses via reflection of a
single-cycle optical pulse. Unipolar pulses in reflection arise due to
specifics of effectively one-dimensional pulse propagation. Namely, we show
that in considered system the field emitted by a flat medium layer is
proportional to the velocity of oscillating medium charges instead of their
acceleration as it is usually the case. When the single-cycle pulse interacts
with linear optical medium, the oscillation velocity of medium charges can be
then forced to keep constant sign throughout the pulse duration. Our results
essentially differ from the direct mirror reflection and suggest a possibility
of unusual transformations of the few-cycle light pulses in linear optical
systems
- …
