584 research outputs found

    Cavity Light Bullets: 3D Localized Structures in a Nonlinear Optical Resonator

    Full text link
    We consider the paraxial model for a nonlinear resonator with a saturable absorber beyond the mean-field limit and develop a method to study the modulational instabilities leading to pattern formation in all three spatial dimensions. For achievable parametric domains we observe total radiation confinement and the formation of 3D localised bright structures. At difference from freely propagating light bullets, here the self-organization proceeds from the resonator feedback, combined with diffraction and nonlinearity. Such "cavity" light bullets can be independently excited and erased by appropriate pulses, and once created, they endlessly travel the cavity roundtrip. Also, the pulses can shift in the transverse direction, following external field gradients.Comment: 4 pages, 3 figures, simulations files available at http://www.ba.infn.it/~maggipin/PRLmovies.htm, submitted to Physical Review Letters on 24 March 200

    Generation of unipolar pulses in a circular Raman-active medium excited by few-cycle optical pulses

    Full text link
    We study theoretically a new possibility of unipolar pulses generation in Raman-active medium excited by a series of few-cycle optical pulses. We consider the case when the Raman-active particles are uniformly distributed along the circle, and demonstrate a possibility to obtain a unipolar rectangular video pulses with an arbitrarily long duration, ranging from a minimum value equal to the natural period of the low frequency vibrations in the Raman-active medium

    Dissipative solitons which cannot be trapped

    Get PDF
    In this paper we study the behavior of dissipative solitons in systems with high order nonlinear dissipation and show how they cannot survive under the effect of trapping potentials both of rigid wall type or asymptotically increasing ones. This provides an striking example of a soliton which cannot be trapped and only survives to the action of a weak potential

    Nonlinear switching and solitons in PT-symmetric photonic systems

    Full text link
    One of the challenges of the modern photonics is to develop all-optical devices enabling increased speed and energy efficiency for transmitting and processing information on an optical chip. It is believed that the recently suggested Parity-Time (PT) symmetric photonic systems with alternating regions of gain and loss can bring novel functionalities. In such systems, losses are as important as gain and, depending on the structural parameters, gain compensates losses. Generally, PT systems demonstrate nontrivial non-conservative wave interactions and phase transitions, which can be employed for signal filtering and switching, opening new prospects for active control of light. In this review, we discuss a broad range of problems involving nonlinear PT-symmetric photonic systems with an intensity-dependent refractive index. Nonlinearity in such PT symmetric systems provides a basis for many effects such as the formation of localized modes, nonlinearly-induced PT-symmetry breaking, and all-optical switching. Nonlinear PT-symmetric systems can serve as powerful building blocks for the development of novel photonic devices targeting an active light control.Comment: 33 pages, 33 figure

    Mutual maintenance of di- and triploid Pelophylax esculentus hybrids in R-E systems: results fro

    Get PDF
    Background: Interspecies animal hybrids can employ clonal or hemiclonal reproduction modes where one or all parental genomes are transmitted to the progeny without recombination. Nevertheless, some interspecies hybrids retain strong connection with the parental species needed for successful reproduction. Appearance of polyploid hybrid animals may play an important role in the substitution of parental species and in the speciation process. Results: To establish the mechanisms that enable parental species, diploid and polyploid hybrids coexist we have performed artificial crossing experiments of water frogs of Pelophylax esculentus complex. We identified tadpole karyotypes and oocyte genome composition in all females involved in the crossings. The majority of diploid and triploid hybrid frogs produced oocytes with 13 bivalents leading to haploid gametes with the same genome as parental species hybrids usually coexist with. After fertilization of such gametes only diploid animals appeared. Oocytes with 26 bivalents produced by some diploid hybrid frogs lead to diploid gametes, which give rise to triploid hybrids after fertilization. In gonads of all diploid and triploid hybrid tadpoles we found DAPI-positive micronuclei (nucleus-like bodies) involved in selective genome elimination. Hybrid male and female individuals produced tadpoles with variable karyotype and ploidy even in one crossing owing to gametes with various genome composition. Conclusions: We propose a model of diploid and triploid hybrid frog reproduction in R-E population systems. Triploid Pelophylax esculentus hybrids can transmit genome of parental species they coexist with by producing haploid gametes with the same genome composition. Triploid hybrids cannot produce triploid individuals after crossings with each other and depend on diploid hybrid females producing diploid eggs. In contrast to other population systems, the majority of diploid and triploid hybrid females unexpectedly produced gametes with the same genome as parental species hybrids coexist with

    Stable autosolitons in dispersive media with saturable gain and absorption

    Full text link
    We introduce the simplest one-dimensional model of a dispersive optical medium with saturable dissipative nonlinearity and filtering (dispersive loss) which gives rise to stable solitary pulses (autosolitons). In the particular case when the dispersive loss is absent, the same model may also be interpreted as describing a stationary field in a planar optical waveguide with uniformly distributed saturable gain and absorption. In a certain region of the model's parameter space, two coexisting solitary-pulse solutions are found numerically, one of which may be stable. Solving the corresponding linearized eigenvalue problem, we identify stability borders for the solitary pulses in their parametric plane. Beyond one of the borders, the symmetric pulse is destroyed by asymmetric perturbations, and at the other border it undergoes a Hopf bifurcation, which may turn it into a breather.Comment: A latex text file and four ps files with figures. Physics Letters A, in pres

    Generation of unipolar half-cycle pulse via unusual reflection of a single-cycle pulse from an optically thin metallic or dielectric layer

    Full text link
    We present a significantly different reflection process from an optically thin flat metallic or dielectric layer and propose a strikingly simple method to form approximately unipolar half-cycle optical pulses via reflection of a single-cycle optical pulse. Unipolar pulses in reflection arise due to specifics of effectively one-dimensional pulse propagation. Namely, we show that in considered system the field emitted by a flat medium layer is proportional to the velocity of oscillating medium charges instead of their acceleration as it is usually the case. When the single-cycle pulse interacts with linear optical medium, the oscillation velocity of medium charges can be then forced to keep constant sign throughout the pulse duration. Our results essentially differ from the direct mirror reflection and suggest a possibility of unusual transformations of the few-cycle light pulses in linear optical systems
    corecore