532 research outputs found
Signal and Noise in Correlation Matrix
Using random matrix technique we determine an exact relation between the
eigenvalue spectrum of the covariance matrix and of its estimator. This
relation can be used in practice to compute eigenvalue invariants of the
covariance (correlation) matrix. Results can be applied in various problems
where one experimentally estimates correlations in a system with many degrees
of freedom, like in statistical physics, lattice measurements of field theory,
genetics, quantitative finance and other applications of multivariate
statistics.Comment: 17 pages, 3 figures, corrected typos, revtex style changed to elsar
Generalization properties of finite size polynomial Support Vector Machines
The learning properties of finite size polynomial Support Vector Machines are
analyzed in the case of realizable classification tasks. The normalization of
the high order features acts as a squeezing factor, introducing a strong
anisotropy in the patterns distribution in feature space. As a function of the
training set size, the corresponding generalization error presents a crossover,
more or less abrupt depending on the distribution's anisotropy and on the task
to be learned, between a fast-decreasing and a slowly decreasing regime. This
behaviour corresponds to the stepwise decrease found by Dietrich et al.[Phys.
Rev. Lett. 82 (1999) 2975-2978] in the thermodynamic limit. The theoretical
results are in excellent agreement with the numerical simulations.Comment: 12 pages, 7 figure
Field Theoretical Analysis of On-line Learning of Probability Distributions
On-line learning of probability distributions is analyzed from the field
theoretical point of view. We can obtain an optimal on-line learning algorithm,
since renormalization group enables us to control the number of degrees of
freedom of a system according to the number of examples. We do not learn
parameters of a model, but probability distributions themselves. Therefore, the
algorithm requires no a priori knowledge of a model.Comment: 4 pages, 1 figure, RevTe
Statistical Mechanics of Learning in the Presence of Outliers
Using methods of statistical mechanics, we analyse the effect of outliers on
the supervised learning of a classification problem. The learning strategy aims
at selecting informative examples and discarding outliers. We compare two
algorithms which perform the selection either in a soft or a hard way. When the
fraction of outliers grows large, the estimation errors undergo a first order
phase transition.Comment: 24 pages, 7 figures (minor extensions added
Retarded Learning: Rigorous Results from Statistical Mechanics
We study learning of probability distributions characterized by an unknown
symmetry direction. Based on an entropic performance measure and the
variational method of statistical mechanics we develop exact upper and lower
bounds on the scaled critical number of examples below which learning of the
direction is impossible. The asymptotic tightness of the bounds suggests an
asymptotically optimal method for learning nonsmooth distributions.Comment: 8 pages, 1 figur
Statistical mechanics of random two-player games
Using methods from the statistical mechanics of disordered systems we analyze
the properties of bimatrix games with random payoffs in the limit where the
number of pure strategies of each player tends to infinity. We analytically
calculate quantities such as the number of equilibrium points, the expected
payoff, and the fraction of strategies played with non-zero probability as a
function of the correlation between the payoff matrices of both players and
compare the results with numerical simulations.Comment: 16 pages, 6 figures, for further information see
http://itp.nat.uni-magdeburg.de/~jberg/games.htm
Efficient statistical inference for stochastic reaction processes
We address the problem of estimating unknown model parameters and state
variables in stochastic reaction processes when only sparse and noisy
measurements are available. Using an asymptotic system size expansion for the
backward equation we derive an efficient approximation for this problem. We
demonstrate the validity of our approach on model systems and generalize our
method to the case when some state variables are not observed.Comment: 4 pages, 2 figures, 2 tables; typos corrected, remark about Kalman
smoother adde
Analysis of ensemble learning using simple perceptrons based on online learning theory
Ensemble learning of nonlinear perceptrons, which determine their outputs
by sign functions, is discussed within the framework of online learning and
statistical mechanics. One purpose of statistical learning theory is to
theoretically obtain the generalization error. This paper shows that ensemble
generalization error can be calculated by using two order parameters, that is,
the similarity between a teacher and a student, and the similarity among
students. The differential equations that describe the dynamical behaviors of
these order parameters are derived in the case of general learning rules. The
concrete forms of these differential equations are derived analytically in the
cases of three well-known rules: Hebbian learning, perceptron learning and
AdaTron learning. Ensemble generalization errors of these three rules are
calculated by using the results determined by solving their differential
equations. As a result, these three rules show different characteristics in
their affinity for ensemble learning, that is ``maintaining variety among
students." Results show that AdaTron learning is superior to the other two
rules with respect to that affinity.Comment: 30 pages, 17 figure
On-line learning of non-monotonic rules by simple perceptron
We study the generalization ability of a simple perceptron which learns
unlearnable rules. The rules are presented by a teacher perceptron with a
non-monotonic transfer function. The student is trained in the on-line mode.
The asymptotic behaviour of the generalization error is estimated under various
conditions. Several learning strategies are proposed and improved to obtain the
theoretical lower bound of the generalization error.Comment: LaTeX 20 pages using IOP LaTeX preprint style file, 14 figure
Thermal Equilibrium with the Wiener Potential: Testing the Replica Variational Approximation
We consider the statistical mechanics of a classical particle in a
one-dimensional box subjected to a random potential which constitutes a Wiener
process on the coordinate axis. The distribution of the free energy and all
correlation functions of the Gibbs states may be calculated exactly as a
function of the box length and temperature. This allows for a detailed test of
results obtained by the replica variational approximation scheme. We show that
this scheme provides a reasonable estimate of the averaged free energy.
Furthermore our results shed more light on the validity of the concept of
approximate ultrametricity which is a central assumption of the replica
variational method.Comment: 6 pages, 1 file LaTeX2e generating 2 eps-files for 2 figures
automaticall
- …
