9,492 research outputs found

    Prediction of the longitudinal tensile strength of polymer matrix composites

    Get PDF
    A micromechanical model was developed for the prediction of the longitudinal tensile strength of polymer matrix composites. The model considers successive fibre breaks within an infinitely wide Li-long representative volume element (RVE), Li being the so-called ineffective length. An elastic-plastic stress transfer model is used to define Li and fibre strength is described by a Weibull distribution. The composite strength is obtained by solving numerically an equation for the maximum RVE stress. A simplified closed-form solution derived proved to be in very good agreement with the base formulation. Although there is still significant uncertainty over model input data, predictions agreed well with experimental strengths of carbon fibre composites

    Supersymmetric SO(10) Grand Unification at the LHC and Beyond

    Get PDF
    We study models of supersymmetric grand unification based on the SO(10) gauge group. We investigate scenarios of non-universal gaugino masses including models containing a mixture of two representations of hidden sector chiral superfields. We analyse the effect of excluding mu from the fine-tuning measure, and confront the results with low energy constraints, including the Higgs boson mass, dark matter relic density and supersymmetry bounds. We also determine high scale Yukawa coupling ratios and confront the results with theoretical predictions. Finally, we present two additional benchmarks that should be explored at the LHC and future colliders.Comment: Published versio

    Finite element analysis of the ECT test on mode III interlaminar fracture of carbon-epoxy composite laminates

    Get PDF
    In this work a parametric study of the Edge Crack Torsion (ECT) specimen was performed in order to maximize the mode III component (GIII) of the strain energy release rate for carbon-epoxy laminates. A three-dimensional finite element analysis of the ECT test was conducted considering a [90/0/(+45/-45)2/(-45/+45)2/0/90]S lay-up. The main objective was to define an adequate geometry to obtain an almost pure mode III at crack front. The geometrical parameters studied were specimen dimensions, distance between pins and size of the initial crack. The numerical results demonstrated that the ratio between the specimen length and the initial crack length had a significant effect on the strain energy release rate distributions. In almost all of the tested configurations, a mode II component occurred near the edges but it did not interfere significantly with the dominant mode III state.FCT - POCTI/EME/45573/200

    The effects of explicit chiral symmetry breaking multiquark interactions on the spin 0 and 1 meson nonets: the ruling of the vector mesons

    Full text link
    We have recently extended the scalar-pseudoscalar sector of a generalized NJL Lagrangian that includes all NLO non derivative interactions in Nc counting (including explicit symmetry breaking ones) in order to incorporate the spin 1 mesons in the low-lying ground state of QCD [1]. Upon bosonization, the well known mixing of the scalar-vector and of the pseudoscalar- axial-vector fields occurs in the quadratic part of the Lagrangian. We show that a linearized diagonalization of these terms can be effected in a completely general way without compromising the underlying symmetries of the Lagrangian [2]. The resulting spin 1 mass spectra evidence a relation involving only the vector and axial-vector meson masses and the constituent quark masses. We discuss the dominant role of this relation in the fits and we show that the model may be fitted to accommodate to a very good accuracy the 4 low-lying meson spectra.Comment: 5 pages, 3 tables; based on a talk given at Hadron 2017, Salamanc

    Exciting a d-density wave in an optical lattice with driven tunneling

    Get PDF
    Quantum phases with unusual symmetries may play a key role for the understanding of solid state systems at low temperatures. We propose a realistic scenario, well in reach of present experimental techniques, which should permit to produce a stationary quantum state with dx2y2d_{x^2-y^2}-symmetry in a two-dimensional bosonic optical square lattice. This state, characterized by alternating rotational flux in each plaquette, arises from driven tunneling implemented by a stimulated Raman scattering process. We discuss bosons in a square lattice, however, more complex systems involving other lattice geometries appear possible.Comment: 4 pages, 3 figure

    A general framework to diagonalize vector--scalar and axial-vector--pseudoscalar transitions in the effective meson Lagrangian

    Get PDF
    A new mathematical framework for the diagonalization of the nondiagonal vector--scalar and axial-vector--pseudoscalar mixing in the effective meson Lagrangian is described. This procedure has unexpected connections with the Hadamard product of n×nn\times n matrices describing the couplings, masses, and fields involved. The approach is shown to be much more efficient as compared with the standard methods employed previously. The difference is especially noticeable if the chiral symmetry is broken explicitly. The paper ends with an illustrative application to the chiral model with broken SU(3)L×SU(3)RSU(3)_L\times SU(3)_R symmetry.Comment: 16 page
    corecore