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Abstract

A micromechanical model was developed 
for  the  prediction  of  the  longitudinal 
tensile  strength  of  polymer  matrix 
composites.  The  model  considers 
successive fibre breaks within an infinitely 
wide  Li-long  representative  volume 
element  (RVE),  Li being  the  so-called 
ineffective length. An elastic-plastic stress 
transfer  model  is  used  to  define  Li and 
fibre  strength  is  described  by  a  Weibull 
distribution.  The  composite  strength  is 
obtained  by  solving  numerically  an 
equation for the maximum RVE stress. A 
simplified  closed-form  solution  derived 
proved to be in very good agreement with 
the  base  formulation.  Although  there  is 
still  significant  uncertainty  over  model 
input  data,  predictions  agreed  well  with 
experimental  strengths  of  carbon  fibre 
composites.
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1. Introduction

Laminated polymer matrix composites are 
increasingly  used  in  structural 
applications.  This  is  mainly  due  to  the 
outstanding  fibre  dominated  ply 
longitudinal modulus and tensile strength. 
It  is  well  known  that,  in  contrast  with 

matrix  cracking,  fibre  fracture  usually 
causes overall  laminate  failure.  It  is  also 
known  that  modern  structural  design 
methodologies  aim  at  taking  full 
advantage  of  material  properties. 
Therefore,  accurate  prediction  of  the  ply 
longitudinal  tensile  strength,  σut1,  is  an 
important  contribution  to  avoid  large 
safety  factors.  However,  longitudinal 
failure is a complicated process [1-6]. 

Let us consider a unidirectional composite 
subjected to a rising tensile load. Owing to 
the statistical distribution of fibre strength, 
various  fibre  breaks  occur  at  different 
locations.  Broken  fibres  cannot  support 
any load at the fractured section. However, 
shear  stresses  in  the  surrounding  matrix 
gradually transfer stress to broken fibres. 
These fibres can actually recover the stress 
acting on unbroken fibres at some length 
Li,  known  as  “ineffective  length”.  Early 
strength  prediction  models  have  viewed 
the composite as a chain of Li-bundles [1-
6]. However, oversimplifying assumptions 
have  been  made  to  maintain  analytical 
tractability.  In  order  to  overcome  these 
limitations, Monte Carlo simulations have 
recently  become  widespread  [7-14].  The 
models  may  contain  hundreds  of  fibre 
elements,  but  computational  cost  limits 
model dimensions and thus makes further 
size  scaling  essential  to  predict  σut1. 
Moreover, model predictions overestimate 
significantly experimental σut1 values.
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This  paper  presents  a  simplified  model 
that  compares  favourably  with 
experimental data for several carbon fibre 
composites.

2. Model description

The aim of the present model is to predict 
the  longitudinal  tensile  strength  of  an 
infinite composite. In these circumstances, 
the composite  can be seen as  an infinite 
stack  of  Li-long  infinitely  wide  regions. 
Obviously,  any  of  such  regions  can  be 
considered  the  representative  volume 
element  (RVE).  Therefore,  the  analysis 
yields  the  longitudinal  tensile  strength 
without requiring any further size scaling. 
Moreover,  one  fibre  only  undergoes  a 
single break,  thus greatly simplifying the 
analysis  [14].  Failure  occurs  when  the 
number  of  fibre  breaks  prevents  further 
load increases. 

Figure 1: Fibre breaks in the RVE.

Early  work  by  Hedgepeth  [15,16] 
indicated that fibres adjacent to a broken 
one  would  be  subjected  to  significant 
stress  concentration  effects.  Most  Monte 
Carlo  simulations  based  models  have 
included such effects and therefore predict 
the  formation  of  broken  fibre  clusters. 
Furthermore, one of the clusters becomes 
unstable  and triggers  final  failure  [7-14]. 
Clusters of fibre breaks have been reported 
in  model  composites  containing  a  very 
limited number of fibres [17]. They could 
also  occur  in  contacting  fibres  of  real 
composites,  although they have not been 
observed in bundle tests [14]. In particular, 
the formation of one large cluster of fibre 
breaks  leading  to  final  failure  seems 
unlikely  and  clearly  lacks  experimental 
support [14]. Moreover, three-dimensional 
finite  element  analyses  showed  very 
modest  highly  localised  stress 
concentration  in  fibres  adjacent  to  a 
broken  fibre  [18-20].  Therefore,  it  is 
assumed  that  fibre  breaks  are  uniformly 
distributed in the RVE. This implies  that 
the average axial distance of the breaks to 
the  RVE mid-plane  is  Li/4.  The  average 
stress  supported  by  broken fibres  in  any 
transverse plane is  thus the stress at  Li/4 
from  the  fibre  break.  The  RVE  average 
fibre stress can then be expressed as

[ ]
)4/()(

)(1

ifbfl

flflfa

LP

P

σσ
σσσ

+

−=
(1)

where  σfl and  σfb are  the  stresses  on  the 
unbroken and broken fibres, respectively, 
and  P is  the  cumulative  probability  of 
fibre  failure.  The two-parameter  Weibull 
distribution is known to provide a good fit 
to  experimental  fibre  strength  data  [21-
23]. Thus, at gauge length Li,
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where σfi is a characteristic strength and ρ 
the  Weibull  modulus.  Since  it  is  not 
possible  to  perform  tensile  tests  at  such 
small  gauge  lengths,  the  distribution  of 
fibre strength must be scaled down from 
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experimental  data  for  some larger  gauge 
length L0,
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This  scaling  seems  to  be  reasonably 
accurate  [21-23],  although  it  tends  to 
overestimate  strength  at  small  gauge 
lengths  [23].  However,  this  can  be 
explained  by  premature  near  the  grips 
failure [22]. Eq. (2) is thus re-written as
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It is now necessary to determine Li, which 
is  strongly  influenced  by  interface  and 
matrix  shear  strengths.  In  general, 
interface debonding takes place when the 
interface is weaker than the matrix, while 
localised  matrix  cracking  and  yielding 
occur otherwise [19]. Recent experimental 
studies  [24-26]  suggest  that  matrix 
yielding  is  the  main  stress  transfer 
mechanism in modern composite systems 
with treated and sized fibres. Accordingly, 
perfect  interface bonding is assumed and 
Li is  calculated  from  the  stress  transfer 
model  presented  in  [19].  This  model  is 
based  on  the  analysis  of  a  concentric 
cylinder  cell  formed by the  broken fibre 
and the surrounding matrix layer (Fig. 2). 
The outer diameter of the matrix layer is 
tangent to the nearest neighbour fibres of 
the hexagonal packing arrangement, which 
is  the  most  representative  for  the  usual 
range of fibre contents.  The thickness of 
the matrix layer is
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where  df is the fibre diameter  and  Vf the 
fibre  volume  fraction.  The  matrix  is 
assumed  elastic-perfectly  plastic  with 
shear  yield  stress  τpm.  Neglecting  normal 
stresses,  stress  transfer  along  the  matrix 
yielding zone (0 ≤ z ≤ zp) is [19]
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In the subsequent elastic zone (z ≥ zp) [19],
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and  Gm and  Ef are  the  matrix  shear 
modulus  and  the  fibre  longitudinal 
modulus, respectively. Stress continuity at 
zp leads to
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Figure 2: Scheme of the stress transfer 
model.

On the  other  hand,  at  z =  Li the  broken 
fibre  recovers  a  high  fraction  α of  the 
remote stress  σfl, e.g.  α = 95 %. Eqs. (7) 
and (9) allow us to write
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Finally,  we can  determine  the  maximum 
fibre stress in the RVE from
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After substitution of (4), (6) and (10), Eq. 
(11) can be expressed as
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are  the  contributions  of  unbroken  and 
broken fibres, respectively, and

fl

i
i d

dL
L

σ
=' (15)






















−=

ρ

σ
σ

00

2

exp
f

fli

L

L
H (16)

Eq.  (12)  can  be  solved  by  a  simple 
numerical  procedure  e.g.  Newton’s 
method. The result is then inserted in (1) 
and the tensile strength calculated from the 
rule-of-mixtures

fafut V σσ ≈1 (17)
 
If we neglect:
• the contribution of broken fibres to the 

RVE stress;
• the  stress  transfer  along  the  matrix 

elastic zone, and thus assume that
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we obtain the closed-form equation
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which is quite convenient if validated by 
the base model.

3. Results and discussion

The developed model is applied below to 
carbon  fibre  composites.  The  first 
objective was to evaluate the accuracy of 
the closed-form Eq. (19) in the usual range 
of material properties. 

Epoxy resins have tensile moduli between 
3.5 and 4.3 GPa and Poisson ratios from 
0.35  to  0.42.  Therefore,  one  can  expect 
shear  moduli  Gm from  1.2  to  1.6  GPa, 
which  a  narrow  interval.  On  the  other 
hand, tensile strengths σpm vary from 60 to 
100 MPa, but shear strength data is scarce 
and  somewhat  controversial.  The  von 
Mises  type  relation  τpm =  0.577σpm has 
often been employed, but there substantial 
evidence  that  polymers  actually  undergo 
local  tensile  failure  under  shear  loadings 
[27-31].  Accordingly,  it  is  assumed here 
that τpm ≈ σpm.

As  mentioned  above,  measuring 
parameters of the statistical fibre strength 
distributions  is  difficult  at  small  gauge-
lengths.  Nevertheless,  recent  single  fibre 
tensile  tests  on  wide  variety  of  carbon 
fibres showed Weibull moduli  ρ = 4 to 6 
[21]. For the most common carbon fibres 
(T300, T800 and AS4),  ρ ≈ 5 [13,32,33], 
the value that is used here.

Comparison between Eq. (19) and the base 
formulation  was  first  made  in  4  cases, 
which correspond to the combinations of 2 
fibres (WF and SF) and 2 matrices (WM 
and SM). The fibres used were:
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• WF with df = 7 µm, Ef = 230 GPa and 
σf0 = 3500 MPa for L0 = 15 mm;

• SF having df = 5 µm, Ef = 300 GPa and 
σf0 = 7000 MPa for L0 = 15 mm;

properties that bound those of well known 
Toray’s T300 and T800 fibres. The softer 
WM matrix had Gm = 1.2 GPa and τpm = 40 
MPa, while  Gm  = 1.6 GPa and  τpm  = 100 
MPa were assumed for the stronger WM.

Fig. 3 shows that Eq. (19) is in very good 
agreement  with  the  base  model  for  all 
cases  considered.  Therefore,  it  was  used 
for comparison with experimental data.

Figure 3: Errors (%) of Eq. (19) in the 4 
cases considered (see text for details).

The  present  model  is  now  applied  to 
Hexcel AS4 and Toray T300 carbon fibre 
composites,  since  there  is  considerable 
experimental  data  in  the  literature  and 
material supplier datasheets (Tables 1 and 
2).  Data  sources  are  Cytec,  Hexcel, 
Matweb,  Qinetic  and  Soficar.  The  fibre 
volume fraction Vf was estimated from the 
composite-to-fibre moduli ratio, E1/Ef.

At this stage, the main difficulty in model 
evaluation is the lack of reliable data for 
the  fibre  characteristic  strength  σf0. 
Nevertheless, it is possible to evaluate the 
model by the following procedure:
• use  experimental  σut1 values  and  Eq. 

(19) to back-calculate σf0 for some pre-
defined  L0;  similar  values  should  be 

obtained  for  the  composites  with  the 
same fibres;

• apply  Eq.  (19)  with  the  average  σf0 

values obtained previously.

Composite Matrix Vf σpm σut1

design. [MPa] [MPa]

A1 828m 0.59 90 1890

A2 828m 0.64 90 2044

A3 934 0.54 83 1586

A4 934 0.60 83 1792

A5 997 0.57 90 1930

A6 997 0.63 90 2206

A7 8551.7 0.63 97 2170

A8 APC2 0.58 100 2060

A9 APC2 0.66 100 2297

Table 1: Experimental data of AS4 fibre 
composites used for model evaluation.

Composite Matrix Vf σpm σut1

design. [MPa] [MPa]

T1 3601 0.59 60 1575

T2 3631 0.59 90 1740

T3 934 0.60 83 1790

T4 914 0.60 48 1432

T5 924 0.60 65 1698

T6 3631 0.57 90 1760

Table 2: Experimental data of T300 fibre 
composites used for model evaluation.

Results presented in Fig. 4 for L0 = 10 mm 
confirm that consistent σf0 values could be 
back-calculated.  The  largest  error  was 
−11.7  %  for  an  AS4  composite.  As 
expected, calculated σf0 values were higher 
than  those  of  single  fibre  tests  [32,33]. 
This  is  due  to  the  high  stress  transfer 
effects  that  lead  to  premature  near  the 
grips failure.
 
Finally,  Figs.  5  and  6  show  that  model 
predictions  agree  quite  well  with  the 
experimental data of Tables 1 and 2.
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Figure 4: Calculated (see text) and 
measured [32,33] characteristic fibre 

strengths.

Figure 5: Errors (%) of Eq. (19) 
predictions relative to experimental data of 

AS4 composites (Table 1).

Figure 6: Errors (%) of Eq. (19) 
predictions relative to experimental data of 

T300 composites (Table 2).

4. Conclusions

A micromechanical  model  was presented 
in this paper for predicting the longitudinal 
tensile  strength  of  polymer  matrix 
composites.  The  model  considered  an 
infinitely  wide  Li-long  representative 
volume element  (RVE),  Li being  the  so-
called  ineffective  length.  Its  value  was 
calculated  from  an  elastic-plastic  stress 
transfer  model  previously  developed  by 
the author. Fibre strength was assumed to 
follow  a  Weibull  distribution  and 
therefore,  under  increasing  load,  various 
fibres  breaks  take  place  in  the  RVE. 
Tensile  strength  can  be  obtained  by 
solving  numerically  an  equation  for  the 
maximum  RVE  stress.  An  additional 
closed-form  solution  was  obtained  by 
neglecting  the  contribution  of  broken 
fibres and the elastic stress transfer length. 
A  preliminary  parametric  study  showed 
that  the  closed-form  solution  gave  very 
good  approximations  to  the  base 
formulation.

The  present  model  allowed  back-
calculation  of  consistent  fibre 
characteristic strengths from experimental 
data  of  AS4  and  T300  carbon  fibre 
composites.  Moreover,  strength 
predictions  agreed  quite  well  with 
experimental values.
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