499 research outputs found

    Asymptotic expansions for test statistics and tests for normality based on robust regression

    Get PDF
    Ankara : Department of Economics of Bilkent University, 1999.Thesis (Ph.D.) -- Bilkent University, 1999.Includes bibliographical references leaves 62-69Önder, A ÖzlemPh.D

    Conductance Quantization at zero magnetic field in InSb nanowires

    Full text link
    Ballistic electron transport is a key requirement for existence of a topological phase transition in proximitized InSb nanowires. However, measurements of quantized conductance as direct evidence of ballistic transport have so far been obscured due to the increased chance of backscattering in one dimensional nanowires. We show that by improving the nanowire-metal interface as well as the dielectric environment we can consistently achieve conductance quantization at zero magnetic field. Additionally, studying the sub-band evolution in a rotating magnetic field reveals an orbital degeneracy between the second and third sub-bands for perpendicular fields above 1T

    On Signature Transition and Compactification in Kaluza-Klein Cosmology

    Get PDF
    We consider an empty (4+1) dimensional Kaluza-Klein universe with a negative cosmological constant and a Robertson-Walker type metric. It is shown that the solutions to Einstein field equations have degenerate metric and exhibit transitioins from a Euclidean to a Lorentzian domain. We then suggest a mechanism, based on signature transition which leads to compactification of the internal space in the Lorentzian region as aΛ1/2a \sim |\Lambda|^{1/2}. With the assumption of a very small value for the cosmological constant we find that the size of the universe RR and the internal scale factor aa would be related according to Ra1Ra\sim 1 in the Lorentzian region. The corresponding Wheeler-DeWitt equation has exact solution in the mini-superspace giving rise to a quantum state which peaks in the vicinity of the classical solutions undergoing signature transition.Comment: 13 pages, 3 figure

    Killing-Yano Forms of a Class of Spherically Symmetric Space-Times II: A Unified Generation of Higher Forms

    Full text link
    Killing-Yano (KY) two and three forms of a class of spherically symmetric space-times that includes the well-known Minkowski, Schwarzschild, Reissner-Nordstrom, Robertson-Walker and six different forms of de Sitter space-times as special cases are derived in a unified and exhaustive manner. It is directly proved that while the Schwarzschild and Reissner-Nordstrom space-times do not accept any KY 3-form and they accept only one 2-form, the Robertson-Walker space-time admits four KY 2-forms and only one KY 3-form. Maximal number of KY-forms are obtained for Minkowski and all known forms of de Sitter space-times. Complete lists comprising explicit expressions of KY-forms are given.Comment: 28 page

    Dynamical Generation of Spacetime Signature by Massive Quantum Fields on a Topologically Non-Trivial Background

    Full text link
    The effective potential for a dynamical Wick field (dynamical signature) induced by the quantum effects of massive fields on a topologically non-trivial DD dimensional background is considered. It is shown that when the radius of the compactified dimension is very small compared with Λ1/2\Lambda^{1/2} (where Λ\Lambda is a proper-time cutoff), a flat metric with Lorentzian signature is preferred on R4×S1{\bf R}^4 \times {\bf S}^1. When the compactification radius becomes larger a careful analysis of the 1-loop effective potential indicates that a Lorentzian signature is preferred in both D=6D=6 and D=4D=4 and that these results are relatively stable under metrical perturbations

    Diffeomorphism algebra of two dimensional free massless scalar field with signature change

    Full text link
    We study a model of free massless scalar fields on a two dimensional cylinder with metric that admits a change of signature between Lorentzian and Euclidean type (ET), across the two timelike hypersurfaces (with respect to Lorentzian region). Considering a long strip-shaped region of the cylinder, denoted by an angle \theta, as the signature changed region it is shown that the energy spectrum depends on the angle \theta and in a sense differs from ordinary one for low energies. Morever diffeomorphism algebra of corresponding infinite conserved charges is different from '' Virasoro'' algebra and approaches to it at higher energies. The central term is also modified but does not approach to the ordinary one at higher energies.Comment: 18 pages, Latex, 2 ps figure

    Towards high mobility InSb nanowire devices

    Full text link
    We study the low-temperature electron mobility of InSb nanowires. We extract the mobility at 4.2 Kelvin by means of field effect transport measurements using a model consisting of a nanowire-transistor with contact resistances. This model enables an accurate extraction of device parameters, thereby allowing for a systematic study of the nanowire mobility. We identify factors affecting the mobility, and after optimization obtain a field effect mobility of 2.5×104\sim2.5\mathbin{\times}10^4 cm2^2/Vs. We further demonstrate the reproducibility of these mobility values which are among the highest reported for nanowires. Our investigations indicate that the mobility is currently limited by adsorption of molecules to the nanowire surface and/or the substrate.Comment: 13 pages, 5 figures (main text); 7 pages, 2 figures, 2 tables (supplementary text

    On Applications of Campbell's Embedding Theorem

    Full text link
    A little known theorem due to Campbell is employed to establish the local embedding of a wide class of 4-dimensional spacetimes in 5-dimensional Ricci-flat spaces. An embedding for the class of n-dimensional Einstein spaces is also found. The local nature of Campbell's theorem is highlighted by studying the embedding of some lower-dimensional spaces.Comment: 17 pages, standard Latex sourc
    corecore