ASYMPTOTIC i-S FO;

TSv.F.Q<. NORMAIITV- "BASEO O » ST .«EGKfSS

n Rh. O -~NOissertatiol

™M

VNS ng ;P

mtlcl bl6: O c

W B .r.
>0S3

/& 3 3



ASYMPTOTIC EXPANSIONS FOR TEST STATISTICS
AND
TESTS FOR NORMALITY BASED ON ROBUST REGRESSION

The Institute of Economics and Social Sciences
of
Bilkent University

by

A. OZLEM ONDER

In Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY IN ECONOMICS

in

THE DEPARTMENT OF
ECONOMICS
BILKENT UNIVERSITY
ANKARA

June 1999



[ certify that I have read the thesis and have found that is fully adequate, in scope and
in quality, as a thesis for the degree of Doctor of Philosophy in Economics

o]

Prof. Dr. Asad
Supervise

I certify that I have read the thesis and have found that is fully adequate, in scope and
in quality, as a thesis for the degree of Doctor of Philosophy in Economics

D

Asst. Prof. Dr. Kivileim Metin
Examining Committee Member

[ certify that I have read the thesis and have found that is fully adequate, in scope and
in quality, as a gl_esis for the degree of Doctor of Philosophy in Economics

Examining Committee Member

[ certify that I have read the thesis and have found that is fully adequate, in scope and
in quality, as a thesis for the degree of Doctor of Philosophy in Economics

Ass¢&-Prof. Dr. Mehmet Caner
Examining Committee Member

I certify that I have read the thesis and have found that is fully adequate, in scope and
in quality, as a thesis for the degree of Doctor of Philosophy in Economics

/

Asst. Prof. Dr. Aslihan Salih
Examining Committee Member

Approval of the Institute of Economics and Social Sciences

Prof. Dr. Ali L. Karaosmanoglu
Director



ABSTRACT

ASYMPTOTIC EXPANSIONS IFOR TEST STATISTICS
AND
TESTS FOR NORMALITY BASED ON ROBUST REGRESSION
A. Ozlem Onder
Ph. D. Department of Economics
Supervisor: Prof.Dr. Asad Zaman

June 1999

This dissertation focuses on two different topics in econometrics. The first one
is presented in Chapter 2 and is related to higher order asymptotic theory.
The power of the Lagrange multiplier, Wald and likelihood ratio tests for the
first order autoregressive model is compared through the approximations to
the distributions of these three tests. The adequacy of the approximation is
examined. The Wald and likelihood ratio tests are found to have superior

performance than the Lagrange multiplier test. The comparisons are done ac-

cording to stringency of the test statistics.

As a second topic in Chapter 3, the dissertation examines the use of resid-
uals from robust regression instead of OLS residuals in test statistics for the
normality of the errors. According to simulation results their improvement

over standard normality tests is found only in specialized circumstances. The

applications on real data set show these conditions occur often enough in prac-

tice.

Key Words: Asymptotic Expansion, Autoregressive Model, Stringency, Nor-

mality Test, Robust Regression
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OZET
TEST iSTATISTIKLERI iCIN ASIMPTOTIK ACILIMLAR
VE
GUCLU REGRESYONA DAYALI NORMAL DAGILIM TESTLER]

A. Ozlem Onder
Doktora, Ekonomi Bolimi
Tez Yoneticisi: Prof.Dr. Asad Zaman

Haziran 1999

Bu ¢aligma ekonometrinin iki farklh konusunu incelemektedir. Bunlardan ilki
2. bolimde yer almaktadir ve yiiksek dereceden asimptotik teoriyle ilgilidir.
Lagrange carpam, Wald ve olabilirlik orani testlerinin birinci dereceden
otoregresif modelde giicleri, s6z konusu testlerin dagilimlarina yaklagtirim yoluyla
kargilagtinlmaktadir. Yaklagtirimlarin yeterlilik dereceleri incelenmigtir. Wald
ve olabilirlik oram testlerinin, Lagrange carpam testinden daha tstiin perfor-
mansa sahip oldugu gozlenmigtir. Testler arasi kargilagtirma sikihk kriterine

gore gergeklegtirilmigtir.

ikinci konu olarak 3. bolumde tez, hata terimlerinin normal dagihmiyla ilgili
test istatistiklerinde olagan en kiiciik kareler artiklan yerine, giiclii regresyon
artiklarnimm kallanimunin etkisini incelemektedir. Simulasyon sonuglarina gore
teknik, standart kullamlan normal dagilim testlerinden ancak belli kogullar
altinda istiin performans gostermektedir. Gergek veri setiyle yapilan uygula-

malar bu kogullarin gergekte yeterli sikhkta gortldiagini gostermektedir.

Anahtar Kelimeler: Asimptotik acilim, Otoregressif Model, Sikihk, Normal

Dagihim Testi, Giiglii Regresyon
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CHAPTER 1
INTRODUCTION

This dissertation examines two different topics in econometrics. The first part
of the dissertation is related to the higher order asymptotic theory, which is
presented in Chapter 2. For most of the econometric problems the exact dis-
tributions of estimators and test statistics are not known. Then as a remedy
we can rely on asymptotic theory. The limiting distributibn of a statistic can
be used to infer an approximate distribution for the statistic in a finite sample.
The central limit theorem provides us such an approximation. But as it is pre-
sented in the literature small sample accuracy of this kind of approximations
are often not accurate enough. This situation directed econometricians to ben-
efit from the approximation techniques devised by mathematical statisticians.
Edgeworth and sadllepoint expansion are some of these methods. It is called
as higher order theory since according to these methods the first few terms of

asymptotic expansions of distributions is used instead of the first order normal

or chi-squared approximations.

Although there is an extensive literature about higher order asymptotic
theory in mathematical statistics, the use of these techniques among econome-
tricians have been slow. The techniques devised were dealing with expansions
of distributions of sums of independent and identically distributed random
vectors at the beginning. The expansions was in general for the univariate
statistics. As Rothenberg (1984a) points out, the increased interest about the
issue among econometricians forced the statisticians to generalization of expan-

sions to more complex problems, like multidimonsional cases with dependency,



nonlinearity etc. The approximation to these complicated problems requires
difficult computations, but the advances in this area are still continuing with

the new applications in econometrics.

In this direction, in this study we attempt to get better approximation by
the application of Edgeworth expansions to some test statistics. We have used
the classical trio of the test statistics, namely, likelihood ratio (LR), Wald
and Lagrange multiplier (LM). However, firstly, we present the higher order
asymptotic theory in Section 2.1. Considering the complexity of the topic, this
section is attempted to be presented at a simple level. It especially covers the
techniques used through this chapter in the dissertation. Therefore it provides
the formulas related to the expansions of one dimensional statistics. Some

preliminary notation and definitions are also presented in this section.

Section 2.2 presents the literature study. Although there have been a few
surveys about econometric applications of asymptotic expansions to the best
of our knowledge, increased interest about the subject has given rise to new
researchs to emerge. The studies in this area are related to a wide variety
of problems such as autoregressive and simultaneous equation models. In this

section we only present the previous studies that are related to approximations

to test statistics.

Section 2.3 provides the definitions of the test statistics and techniques to
compare the performance of test statistics. The concept of stringency will be
introduced. The theoretical results related to efficiency of test statistics is
presented. Asymptotic equivalence of the test statistics will be presented as a

result of the first order theory and the higher order efficiency of test statistics

will be discussed.
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After that point the dissertation presents an application to a simple model.
Section 2.4 provides the statistics for testing the first order autocorrelation in
a stationary process. If there is a uniformly most powerful test (UMP), than
it is not possible to improve upon this test. So it is unnecessary to use other
test statistics. Ilovewer, UMP test does not exist in all hypothesis testing
problems. Also, we can include test for auntocorrelation in this category. In
this context, different tests are proposed for these types of hypothesis testing

problems. LM, Wald and LR tests are among them.

For the test statistics, firstly we calculate the empirical critical values and
powers through Monte Carlo simulations and then try to get good approxima-
tions for reasonable sample sizes. The comparisons of test statistics have been
conducted by using acenrate approximation formulas instead of empirical ones.
Our comparison method is stringency. Regarding to this the shortcomings of

the tests are compared.

According to the first order theory the test performance of the LM, Wald and
LR tests are equivalent. Engel (1984) shows that the asymptotic local power
curve of the three tests are the same. If they are asymptotically equivalent the
choice between the test statistics should he according to ease of computation.
But the higher order theory suggest the performance of the three tests are

differing and the results of the higher order theory are in favor of the LR test.

The aim of this dissertation, therefore, is Lo see the situation for the test of
first order autocorrelation. The significance of this thesis is mainly to clarify
the finite sample performances of the test statistics for the first order autocor-
relation model. Also, this study presents the formulas for the critical values
and the power curves of each tests, so that this results could be replicated

without the need of Monte Carlo simulations. We hope that the formulas for



the critical values could be used for applied studies to test for first order au-

tocorrelation.

Chapter 3 develops a normality test based on robust regression and discusses
its improvement on other normality tests. The consequences of violation of the
normality assumption of regression residuals are known, and many test statis-
tics devised for testing the normality of residuals. See for example Pierce and
Gray (1982), White and McDonald (1980) and Pearson et.al. (1977), Urzua
(1996) and Jarque and Bera (1987) [or the descriptions some of these tests and

discussions about their powers.

One difliculty related to normality tests is that the residuals are not directly
observable. So the tests developed for these purposes depending on estimated
residuals which are the ordinary least squares (OLS) ones. On the other hand,
it is also known that OLS estimators can highly be influenced by the outliers.

In other words, outliers and nonnormal errors may casily be masked inan QLS

analysis.

For the identification of the outliers some robust techniques are developed.
For instance, Least Trimmed Squares (LTS) estimator, which is introduced by
Roussecuw (1984), is one of them. Since the robust regression reveals the out-
liers, it may provide a clearer indication about lack of normalily of residuals.
The main idea in this chapter is to use residuals from a robust estimator (LT'S)
instead of OLS residuals as the basis for normality tests. Although it scems
a clear idea, there does not seem to be such a study in the literature. In this
context, we can say that this part of the thesis fills this gap in the literature
and presents the effect of the use of robustified normality tests through simu-

lations and applications on some real data set.



The normality tests developed by Jarque and Bera (1980) and Doornik and
Hansen (1994) are very popular regarding regression applications. We have se-
lected these two tests in our analysis as the standard normality tests. Section
3.1 presents these statistics, with their explicit formulas. As in most of the
normality tests the statistics depend on sample skewness and kurtosis. Section
3.2 introduces the LTS estimator. Also, the general algorithm to find the es-
timator is presented. In Section 3.3, some motivating examples are presented.
However, first the calculations of critical values are conducted through Monte
Carlo experiments. Section 3.4 develops the simulation study. In this section
the comparisons of the tests are presented. The situations in which the robust
tests have improvement over the standard normality tests are examined. Sec-

tion 3.5 presents some applications to data sets from economic literature.

Finally Chapter 4 is devoted Lo concluding remarks regarding to the success
of higher order approximations in our application and the success robust tests

of normality. Also, the recommendations for the directions of further research

are given in this chapter.



CHAPTER II
ASYMPTOTIC EXPANSIONS FOR TEST
STATISTICS

2.1 Higher Order Asymptotic Theory

2.1.1 Introduction

Exact finite sample distributions of estimators and test statistics are not avail-
able in most of the cases. Then a solution is to rely on asymptotic theory.
Several approximation methods devised for this purposes. Techniques for
approximating probability distributions have been studied by mathematical

statisticians since the ninetecnth century, and there is an extensive literature

on this subject.

[t is possible to obtain approximate distribution of an estimator or test
statistic as the sample size becomes large. The central limit theorem provides
us with approximation to distribution of estimator. Similar approximations are
used for test statistics although the limiting distribution is often chi-squared
rather than normal. It is also possible to get better approximations through
higher order asymptotic expansions. FEdgeworth expansion and sadllepoint
expansion are the two well known methods for obtaining the higher order ap-
proximation to distribution functions. There are also different approximation
methods (see Rothenberg (1984a) for the alternative methods). But as Mag-

dalinos (1992) points out, these ad hoc methods may lead to more accurate



but less interpretable results relative to asymptotic approximations, so may

not be suitable for theoretical work.

We will give the emphasis to the results related to univariate distribution
function, since the econometric application of the asymptotic expansions will

be for the univariate case in the dissertation.

2.1.2 Preliminary Notation and Definitions

We will adhere closely to the notation presented here throughout the disserta-

tion.

The cumulative distribution function (CDF) is denoted by F and the cor-
responding distribution function is f. The CDF of a standard normal random
variable is represented by @ and its distribution function by ¢. Normal distri-
bution with mean g and variance o will be denoted by N(g, o). The notation

X2 will be used for chi-squared distribution with & degrees of freedom.

Let X be a random variable. FE(X) represents expected value of X, while
Var(X) the variance of X. With reference to a sequence {X;} of random vee-
tors, the abbrevation i.i.d. will stand for “independent and identically dis-

tributed”. The probabilty of an event will be indicated by P(.).

Definition 1 Given two sequences of real numbers {a,} and {u,} we say that
a, is of order u,, denoled a, = O(u,), if there cxist a constant M > 0 such

that |a,/u,| < M for all n. Clearly a, = O(1), if the sequence a, is bounded.

Definition 2 Given two sequences of real numbers {a,} and {u,} we say that

a, is of lower order than u,, denoted a, = o(uw,), if

. a"
lzmn_,ool —’ = 0.
Uy

7



Clearly a, = o(u,) implies that ¢, = O(u,).
Definition 3 (Convergence in Distribution)

X, converges in distribution (o a random variable X with distribution
Sunction F(X), if  lim,_o|F.(X) — F(X)| = 0 at all continuily poinls of
F(X). This is written as X, 4 X
Definition 4 If X is a scalar random variable with distribution function F,
its characteristic function is defined as y(l) = Eexp{t1 X}, where t is real,
F represents the expectalion with respect to the distribution of X, and i = /-1
Definition 5 Ther-th moment of X is given by the r-th derivalive of i™"4(t)
evaluated at zero;

E(X™) = i7"p(0).
Definition 8 The function K(4, X) = K(t) = logy(t) is called the cvmulant
generating function(CGF). The r-th derivative of i~" K (t) evaluated at zero,

is called the r-th cumulant of X and is denoled by,
Ky = 'i_"'l\'("')(()).

Remark: «, is the mean and &, is the variance.

2.1.83 Central Limit Theorem

The central limit theorem is the basic theorem of the asymptotic theory,

through which it is possible to approximate the distribution of many statistic

as normal.

Theorem 1 (Lindeberg-Levy Central Limit Theorem) Let {X;} be i.i.d. with

mean p and finite variance o*. Then

1 2 d 2
—= > (Xi = p) > N(0,5%).
\/"_l =1



Proof: Rao (1973:127)

It is possible to generalize this result to non-identical distributions and

multivariate case (see Serfling (1980) for the central limit theorems in general

cases).

Berry-Essen theorem gives an explanation to the accuracy of the central
limit theorem. It is related to the difference between the exact distribution of

the standardized statistic and the standard normal distribution.

Theorem 2 (Berry-Essen)

Suppose X;...X, are i.i.d. random variables with EX; = 0, EX}? = o%and

E|Xif* = p < 00. Let F(l) be the CDF of S, = (X0, X;)//no).

0.7975p
a/n

Proof: sce Bhattacharya and Rao(1976:110).

sup |F.(1) — 8(1)] <
ip |Fu(

2.1.4 Edgeworth Expansion

The central limit theorem provides us approximation of test statistics. This
is certainly a powerful tool but unfortunately in many cases these approxi-
mations are poor in quality and does not provide a good accuracy unless the

sample size is very large. Many techniques have been devised to increase the

accuracy of the approximation to the test statistics.

Fdgeworth expansion is one of these methods. This is an expansion in pow-
ers of n="2. The asymptotic approximation of the central limit theorem is
the leading term in the Edgeworth expansion. So it can be seen an extension

of large-sample techniques based on central limit theorem. The central limit

9



theorem provides us an approximation of order O(n=/%). We will call it as a
first order approximation. Besides we will develop Edgeworth approximation
accurate of order O(n~%2) and call it as third order approximation in this sec-
tion. More generally a k-th order approximation will be one of order O(n=*/ 2‘)

In order to make the approximation we will benefit from the Taylor expansion.

Theorem 3 (Taylor Ezpansion)

Let the function g have n-th derivative ¢ everywhere in the open interval
(a,b) and (n-1)-th devivative g~ continuous in the closed interval [a, b]. Let
x € [a,b]. For cach poinl y € [a,b], y # x, there cxisls a poinl z inlerior to the

interval joining x and y such that
g® () ( ) o 9(z) n
gly) = g(x) +Z z) = (y —a)"

Edgeworth expansions requires the use of the higher order cumulants. We will

need the following preliminary results related to CGIF’s and cumulants.

Lemma 1 (Properties of CGF) Let K(1,X) be cumulant generating function

of X. It has the following properties;
K(t,aX +b) = ith+ K(at, X),
(6 X) = Zl{(t,x,»),
i=1 i=
K(t,X) = Z (X)(it)2/5!.

Proof: The first two equations follow from the definiton of cumulant gener-

ating function, the last one can be shown by Taylor expansion.
Lemma 2 (Properties of the cumulants) Let k;(x) be the j th cumulant of X.
ki(aX) = @ri(X),

10



n

lij(z ,Y,‘) = Z "v'j(Xi),
i=1 i=1

XD = (X) i 5>,
ki(X+b8) = ri(e)+0

Proof: Follows from the properties of cumulant generating lunctions.

Remarks: Let x4 be the mean and o the standard deviation of X. From the
properties of cumulants follows that, the cumulants of standardized variable
are £;((X — p)/o) = £&;(X)/a? for j > 2, while k;, = 0 and &, = 1 for the
standardized variable. The third cumulant of the standardized variable called
as skewness and the fourth cumulant as kurtosis. For a standardized variable
k3 is the third moment and the k4 is the fourth moment less three. For a

normal random variable all cumulants greater than two are zero.

Let X,...X, be 1.i.d. random variables with common density function f and
E(X;) =0and Var(x;) = 1 and X; posseses dcrivatives up to the fourth order.
Let ¥ be characteristic function associated with f, then the CGF logy can be

expanded around zero as a power series through Taylor expansion:

I . | N S LT
logy(t) = E(zt)2 + (—;n3(zt)" + ﬁ&;(ll)' + .y

where &, is the r-th cumulant of f.

The standardized sum T, = 5~ X;/\/n also has zero mean and variance one;

let f, and ¥, be its density and characteristic functions. Then,
logpn(t) = nlogip(t/v/n).

This follows from Lemma 1. By the Taylor expansion of the CGF,

1 . 1
y 1 = it)? a2t 3 —rq(it 4 sere
nlogyp(t//n) (i) + ()'\/EM(”) +24nm(c) +

| —

11



Taking the exponents,

Ya(t) = exp(loga(l)),

e~ 12 cazmra i taimrait) 4.

Since €* has the expansion 1 + = + %;’L‘Z-l-..., if we expand the second term,

-2/ 1 . 3k4(20)* + £3(it)°
b (1) = e~t*/2 e (11)3 4 3
Yu(l)=e (1 + 6\/,—'”(”) + 7 + ) . (1)

Lemma 3 If f has characteristic function (1), then the first derivative [’ has

characteristic function ) (l) = —itap(t).

Proof: Let u(z) = ¢'** and dv(z) = f'(z)dz, from integration by parts

Pop(t) = /_ u(@)dv(z) = u(e)v(x)|>, — /_00 v(x)u'(2)de,

o0 o<

= -—/ e f(x)de = —ity(t).

00

From this result by induction follows that, if f has the characteristic function

(L), then the r-th derivative f7 has characteristic function (—zt)"(2).

Lemma 4 (lFourier inversion) Lel (1) be characteristic function for T,. The

density function f, for T, can be written as:

1= . _
f@ =57 [ ewia (2)

o0
Theorem 4 (Edgeworth Density)
Suppose X; are i.i.d. with mean 0 and variance 1, and k3 and Ky the
skewness and kurlosis, vespectively. A thivd order approximation lo densily
T, =5 Xi/V/nis

e 6l0) + ol 1) + (=) i) + 5 (130

Proof: The result follows through application the Fourier inversion formula in
Lemma(4) to characteristic function in Equaton (1) and dropping the higher
order terms. By using the Lemma (3) and the fact that characteristic function

of ¢(x) is =/ the desired result is obtained.

12
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Definition 7 A Illermite polynomial of degree r is

@)
#)

Using the Hermite polynomials, we can write the third order approximation

H.(x)=(-1)

to the density T, as:

o)~ . K3 e 3/\,4[14(2) + K%I{(,(l') )
J(x) ~ ¢(z) (1 +o ﬁll,,(.,,)+ - ) (3)

It is easily checked that,
Hi(z) =2, Hy(z)=2*~1, Hy(z)=2%-3z, Hy(z)=2"-62>+3,
Hs(z) = a® — 102® + 152,  Hg(z) = 2® — 152" + 4522 — 15.

Integration of the Edgeworth density in Equation (3) gives us the approxi-

mation to the cumulative distribution function:

N k3lly(z)  3k4Hs(2) + £2Hs(2)
Fn(a") ~¢— QS(.’B) ( 36\/25 + _— on 2 ) . (4)

The approximation in Equation (4) is called as Fdgeworth-A expansion.
Note that the Edgeworth expansion is not a probability density since it does

not integrate to one and can take negative values. The following formula avoids
this problem.

Theorem 5 (Edgeworth-B Expansion) Another third order approzimation to
the cumulative distribution function is given by

ka(z? — 1) 3r4(3z — %) + #3(82° — 1x)
() = x— ' . 3
Fl) q’(‘ 6/n T T2n (%)
= oz +

Proof: Let a, b, be unknown quantities. By Taylor expansion of P =

a/\/m+b/n),

2
P~ 9(2)+ (7 + 3) #o) + (7 - i) V()
b__ﬂqg(w) + 0(,1—3/2).

= «b(w)+\/iﬁ¢(w)+

13



Matching the terms of order 1/4/n to the ones in Equation (4) we see that,
a = —k3Hy(2)/6. If we put the value of llermite polynomial, we get the value
of a. Matching the terms of order 1/n and solving for b, yields the formula of

the theorem.

From [Edgeworth-B expansion it is possible to have an inversion, called as
the Cornish-Fisher expansion. The inversion is related to a representation of

a random variable by asymptotic expansion in terms of a standard normal

variable.

Corollary 1 (Cornish-Fisher Inversion) .
Let ¢, be the upper o quantile, i.e. the solution for fired a of the equation
F(er) = «, where $(ca) = a. Let a(x), b(x) be as defined in Theorem 5, where
a'(z) be the first derivative of a. Then,
' .
¢ = o - a\(;%) 4 (ca)a((.;) — b(ca)

is a third order approzimation. P(T, < ¢%) — a goes lo zero at rate O(n=3/%),

Proof: Let ¢t = ¢, + f/v/n + g/n. Then,

P(Tn<c;)=¢(c;+ﬁf_}f:_)+@)

Substitute ¢%. Note that a(c}) =~ a(c.) + fd'(ca)/+/n and b(c},) = b(ca), where
these approximations gives the required degree of accuracy. So,

Toe ) = o fta(ed) | 94 b(ca) + fa'(ca)
P(T,<c)=9® (ca + T + - ’

Since ®(c,) = a, we must sel the higher terms to zero to get the desired
accuracy. So, [ = —a(c,) and g = a(ca)a’(ca) — b(ca). We can get the approx-

imation by substituting the values of f and g.
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Erpansion under (leneral Conditions

Until this point we have discussed asymptotic expansions of independent
and identically distributed random variables. Following the procedure in Rothen-
berg (1984a) it is possible to develop higher order approximations for more

general cases. Now we will make a summary of his approach.

Let T, be a standardized statistic having stochastic expansion:
A, B, R,
T.=X —_—t — 4+ —=.
n n + \/',_1‘ + n + nﬁ
where X,,, A,,, B, are sequences of random variables with limiting distributions
as n tends to infinity. Suppose R, is stocastically bounded and the limiting
distribution of X, is N(0,1). Let 7" = X, + A,n""/? + B,n~'. Suppose, T"

has finite moments up to high order and its r-th cumulant is order of n™(2-7)/2,

where r is greater than 2. Furthermore, suppose the mean and variance can

he written as:

ET) = = ton™),
2l : b ~1
Var(T') = 1+ - +o(n™").

where @ and b depend on the moments of X,, A, and B,,. The restandardized

variable is,

1" —af/\/n

r[w —

V1+b/n .

Its third and fourth moments are
BIP = —=+o(n™),

E(T")* = 3+=+o(n™).



here ¢/y/n and d/n is the approximate third and fourth cumulants of T’ re-

spectively. It is clear that

P(T"<2) =P (1 < f:_“_/_\/_'_‘) ,
V14b/n

if we expand the term in denominator in Taylor series and dropping the terms

of order n*? we get

Now it is possible Lo approximate P(T < ) by using Edgeworth-B expansion
in Equation (6) replacing ¢ with &3 and d with k4.

- 1+ 7z | sz 4 yaa®
PT,<z)~®&(z
(Tn < @) (‘L + 61 + 2n

where
7w o= c—6a; 43 =9d— t4c¢* - 36b + Aac;
Yo = —=¢ Y= 8¢ — 3d.

In a similar way we can get Edgeworth-A expansion.

It is possible to generalize the results for the one-dimensional Edgeworth
expansion to the multivariate case. 1 is again throngh the expansion of char-
acteristic function and Fourier inversion. Barndorff-Nielson and Cox (1979)
and Skovgaard (1986), McCullagh (1987) are some of the studies about the
multivariate Edgeworth expansion. For the use of Edgeworth expansion for

different statistics under different condititons sece Barndorff-Nielson and Cox

(1989).

2.1.5 Saddlepoint Approximation

In general the Edgeworth expansions provides a good approximation in the
center of the density but can be inaccurate in the tails. Saddlepoint approxi-

mation, which is called also as tilted Edgeworth expansion, gives more accurate
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results especially in tails of the distributions. It was developed by Daniels
(1954). Daniels (1956) and Phillips (1978) have applied the method to auto-
correlation statistics. Since we don’t benefit from this tecnique in our analysis,
we will not explain it in detail. Field and Ronchetti (1990) explain the saddle-
point technique including different applications. Jensen (1995) contains many
resulis, applications and a survey of literature. The general idea can be sum-
marized as follows. First the distribution is recentered at the point where the
distribution is to be approximated. Then the Edgeworth expansion is used
locally at that point and then the results are transformed back in terms of the
original density. One difficulty about this approximation is it requires knowl-
edge of the cumulant function and is more complex relative to Edgeworth

expansion.

2.2 Literature Survey

Although there is an extensive literature about the higher order approximation
theory by mathematical statisticians, the application to the econometrics not
have a long history. Since 1970’s there has been increasing interest about this
issue. Today asymptotic expansions are used in different topics of economet-
rics. Phillips (1980) and Rothenberg (1984a) made a survey of econometric
applications. But since that time many new applications take place in the
literature. The emphasis in,the present survey will be on the econometric
applications of asymptotic expansions for test statistics. But first of all we

will investigate the studies about higher order asymptotic expansion of test

statistics.

There are some survey papers that evaluate the performance of testing pro-
cedures through the higher order asymptotic expansions under local alterna-

tive. Bickel (1974), Planzagl (1980), and Rothenberg (1982, 1984a) are some
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of these studies. The formal expansions are given for the univariate case in
Chibisov (1974) and Pfanzagl (1973). The main results contained in Pfanzagl
and Wefelmeyer (1978). For the multivariate case there are the studies of Peers
(1971), Hayakawa (1975,1977), Harris and Peers (1980), Hayakawa and Puri
(1985). Cordeiro et.al.(1994) develop formulac for test statistics in generalized
lincar models. Hayakawa (1977) and Hayakawa and Puri (1985) present also

the asymptotic expansions of some test statistics for testing the hypothesis

against fixed alternatives.

While much of the literature examined the case of independent and identi-
cally distributed random variables, some papers extended the calculations to
certain time series settings. Taniguchi (1985) derives the asymptotic expansion

of some test statistics for a gaussian autoregressive moving average process.

Cribari-Neto and Zarkos (1995) obtain Bartlett type corrections to Wald,
LM, and LR test statistics for the multivariate regression model. They com-
pare their results with the size corrected critical values through simulation.

They found in general their approach more effective.

For the econometric applications of higher order approximations, it is nec-
essary to know the validity of expansion. Chandra and Ghosh (1979,1980),
Sargan (1980) presents the theory of the validity of Edgeworth expansions in
the i.i.d case. Sargan(1976), Sargan and Satchell (1986) and Phillips (1977h)
make general extension of the validity theory to time series. Magdalinos (1992)

develops a method of proving the validity of Edgeworth type approximation

in econometrics.

The econometric applications of higher order asymptotic expansions of test

statistics are conducted according to the applications of general formulas de-
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vised by the studies above to econometric problems. Now we will list some of

these studies.

Autoregressive Model:

P.C.B. Phillips has been one of the pioneers in applying asymptotic expan-
sion to the first order autoregressive AR(1) model. Phillips (1977a) obtained
the Edgeworth expansion of the least squares estimator and associated ! ratio
test statlistics for the AR(1) model with zero mean for a stationary process.
Then comparisons between the exact, first and second order approximations
of the lest squares estimators are made for the finite sample sizes. The exact

distributions are calculated by numerical integration.

Tanaka (1983) extends the results of Phillips (1977a) through getting higher
order expansion for the estimator of AR(1) model with unknown constant
mean. He also obtains t ratio tests based on these estimators. The exact dis-
tributions are calculated through the Monte Carlo simulations and some com-
parisons between exact and approximate distributions are made. According to
the Phillips’ and Tanaka’s studies the higher order asymptotic approximations
are not satisfactory for finite sample distributions (for a sample size of 20-30)
of estimators and test statistics. Ior a less stable model less satisfactory results

are obtained.

Rothenberg (1984a) examines autoregressive models with a stable root in

his survey. In this study, the approximations related to the autoregressive
models scems to be satisfactory for small values of the estimators. Edgeworth

approximations are not so accurate for small samples and small values of esti-

malor.
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There are also other approaches to approximate sample statistics from au-
toregressive models. Daniels (1956), Durbin (1980), Phillips (1978) and Wang
(1992) derived saddlepoint approximation for the least squares coeflicient.
Phillips’s (1978) compares Edgeworth expansions with saddlepoint expansion.
Both approximations are found unsatisfactory for small sample sizes and large
least squares coefficient. Saddlepoint approximation is not defined in the tails
for small sample sizes and Edgeworth approximation distorts substantially in
the tails. Wang (1992) extends Lugannani & Rice’s (1980) saddlepoint approx-
imation method to the problem and shows that his approximation performs

better relative to other approximation methods for the distribution including

the extreme tail and sample size as small as 10.

The case of unit root attracted most of the researcher and there has been
a lot of studies about the asymptotic distribution of the test statistics for
the autregressive models having unit root as the null hypothesis. Dickey and
Fuller (1979, 1981) and Evans Savin(1981,1984) are some of these rescarches.
Phillips (1987a) generalized these results by generalizing the assumptions on
error terms. The major results of these studies is that the asymptotic distri-
bution have a discontinuity around one and therefore the finite sample per-
formance of the statistics are poor. Therefore Phillips (1987b) develops an
asymptotic theory for a first order AR model covering the possibility of a root
near unity. Perron (1989), Nabeya and Tanaka (1990) and Perron (1991) tab-
ulate the limiting distribution: of the least squares estimator in a AR(1) model
where tl‘;e true model is near-integrated. Nabeya and Tanaka (1990) and Per-
ron (1991) examine the limiting power of unit root tests. Abadir (1993) derives
the closed forms for the distribution of conventional statistics to derive asymp-

totic power functions of some unit root tests.



Related to higher order approximation Phillips (1987a) developes asymp-
totic expansions for the unit root case. But the improvement is not examined.
Larsson (1995) derives saddlepoint approximation of some test statistics in
near-integrated AR processes. Some exact formulas for the distribution func-
tions are also presented. Simulation and numerical calculations show that in

most of the cases the approximations work reasonably well.

Simultaneous Equation models:

Rothenberg (1984a) presents some examples of higher order asymptotic dis-
tribution for simultaneous equation models. Related to the higher order power
comparisons of test statistics he suggests that Wald, LR and LM test are
asymptotically efficient after size correction. In more complex, full informa-
tion models the power functions for the three tests cross. Edgeworth expansion

to the distribution functions of some test statistics under the null hypothesis

are given in Sargan (1975, 1980).

Morimune (1989) examines the properties of the ¢ tests associated with or-
dinary least squares, two-stage least squares, limited information maximum
likelihood estimators in a structural equation. He benefits from asymptotic
expansions of ¢ stalistics to find out deviations of real sizes from nominal
sizes theoretically. The asymptotic expansions confirm the results of Monte
Carlo experiments. The limiting ¢ distribution are not found appropriate as

null distribution for some cases. Modified ¢ test statistics were proposed as a

byproduct from the asymptotic expansion.

Magdalinos (1994) is concerned with the relative performance of the sev-

eral tests for the admissibility of overidentifiying instrumental variables. He
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calculates the size corrections to the order T, where T is the sample size.
. . . .
The local power function of the size corrected tests is found to be same to the

order T,

There are different test statistics for testing the overidentifiability condi-
tions on a structural equation in simultaneaus equation system. Kunitomo
et.al. (1983) and Magdalinos (1988) derives the distribution of test statistics
through asymptotic expansions. Magdalinos (1988) compare the performance

of the tests using higher order local power of the tests.

Magdalinos and Symeonides (1996b) reinterpreted the tests of overidenti-
fication restrictions as the test of overidentifying orthogonality conditions for
the simultaneous equation models. The third order local power of various tests

under the alternative of false orthogonality conditions is derived and the for-

mulations found to be the same,

Bootstrap:

It is known that in many econometric problems bootstrapping can give
greater accuracy than asymptotic normal distribution. Through Edgeworth
expansion it is possible to show the accuracy of the bootstrap estimates and
tests (see Zaman (1996) for details related to the subject). Rayner (1990) de-
rives estimates of p values and critical values through bhootstraping the stan-
dardized estimator of the coeflicients in the normal linear regression models
where the error precision matrix depends on unknown parameters with er-
vor o(T™'). It is also shown that through the bootstrapping of Rothenberg’s
(1984b) variance adjusted statistics it is possible to obtain test statistics with

errors o(1'72).



Hall and Horowitz (1996) get improved critical values for the test of overi-
dentifying restrictions and ¢ test based on generalized method of moments
through bootstrapping the test statistics. By the use of Edgeworth expansion
it is shown that bootstrap provides improvement over first order approxima-

tion of the asymptotic theory. The Monte Carlo experiments also support this

result.

McManus et.al (1994) suggest like Hall and Horowitz (1996), to use the
bootstrap critical values for a better approximation. They show that the ap-
proximation of the asymptotic theory is poor for finite sample sizes, when the

partial adjustinent model with autoregressive errors is nearly nonidentified.

Heteroskedasticity:

Maekawa (1988) apply general formulas of Hayakawa (1975) and Harris and
Peers (1980) for the LR, LM and Wald tests to detecting heteroscedasticty in
regression models. He gets asymptotic expansion of the non-null distribution
of the three tests up to O(T"/ 2). Through power comparsion, none of statistic
is found uniformly superior to the others. But if the moments of the explana-
tory variable are stable over the whole sample period, then the asymptotic

power up to O(T~1/2), is equivalent for the three tests.

The asymptotic theory provides poor approximation for the null hypoth-

esis of homoskedasticity. In order to improve the approximation, Attfield
(1991) made Barlett corrections to the LR test statistic for different types of

heteroskedacticity in the linear model.

A similar work is conducted by Honda (1988). By using the general formula

for the LM test developed by Harris (1985), he provides the formula for the

23



size correction to the LM test for heteroskedasticity. Through Monte Carlo
experiment, he indicates the improvement in the accuracy of the size of the

test. The use of size corrected LM test increases the power of the standard

LM test.

Further Applications:

For the statistics where error covariance matrix is nonscalar and depends
on a set of unknown parameters, exact analysis is difficult and asymptotic
approximations takes place. Rothenberg (1984c) has used Edgeworth expan-
sions to evaluate different testing procedures for the regression coefficient of
the normal linear model with unknown covariance matrix. General formulac
for the multiparameter Wald, LR and LM tests are derived and the test statis-
tics are compared. Rothenberg obtained adjusted critical values so that the
three tests have the same size. The third order approximate local power func-
tions indicate that when null hypothesis is one dimensional, all three tests are
equally powerful. When the hypothesis is multidimensional none of the tests

is uniformly powerful than the others.

Magee (1989) has applied Rothenberg’s (1984¢) size correction to F test of
linear hypothesis in the linear regression model with AR(1) errors. The simu-

lation results are in favor of these corrections,

Magdalinos and Symeconides (1996a) derives alternative ciritical values for
Rothenberg’s (1984¢) testing problem, using Edgeworth expansion based on I
and ¢ distributions which are locally exact,i.e. they reduce to the exact critical
values when the error covariance matrix known up to a multiplicative factor.

They also suggest instead of size correction to use Cornish-Fisher corrections.



The simulation results are found in favor of the locally exact Cornish-Fisher

corrections.

Similarly Rothenberg (1988) deals with the problem of testing regression
coefficients in models with unknown error covariance matrix. le applies the
approach in Rothenberg (1984¢) for one dimensional hypotheses to get more
interpretable results through relatively simpler higher order approximations.
Approximate local power functions are derived for these tests. He applies
the approximations to two examples, one involving heteroscedasticity and the
other autocorrelation. e concludes that size and power correction terms can
be large even in very simple models where the first order asymptotic theory

might be expected to work well.

There are a lot of estimators and tests in the form of a ratio of quadratic
forms in normal variables and their exact distributions are not known. Marsh
(1998) derives saddlepoint approximations for the distributions of a ratio of
noncentral quadratic forms in normal variables. He also presents an applica-
tion to a simple case, I tests in the linear regression model to increase the
accuracy ol the size and power calculations. The calculations demonstrate
that approximate size calculations are in fact exact, whereas those for powers

are of high accuracy.

Although the saddlepoint approximation is an extremely accurate method
for approximating probability distributions, as presented in Marsh (1998) it
is difficult to apply. Lieberman (1994) proposes a theoretically justified ap-
proximation to the saddlepoint expansion to circumvent these difficulties. Ile
makes an application to the Durbin-Watson test statistic. It is found that the

approximation of saddlepoint expansion is satisfactory for sample sizes 40 or

more.



The diagnostic checks that seek the evidence of misspecification is impor-
tant for parametric models. There are conventional moment based test statis-
tics for misspecification. Chesher and Smith (1997) examines potential to use
likelihood ratio test to detect misspecification of parametric densities. The
advantage of the use of LR test is stated as its suitable structure for Bartlett
correction, unlike conventional moment tests. After obtaining Barlett correc-
tion of test statistics they present the approximate power of the test under the
local alternative. Monte Carlo experiments suggest that LR test can perform

well relative to conventional moment based tests,

The information matrix test was introduced by White (1982) to detect the
misspecification of likelihood functions. It is suggested that information matrix
test have finite sample distribution which is poorly approximated by its asymp-
totic chi-squared distribution. Chesher and Spady (1991) presents Monte Carlo
experiments which confirm this situation and as a remedy proposes to use
Cornish-Fisher expansion. For application these approximations information
matrix test is defined as efficient score test. As the special case of information
matrix test the results for the full information matrix, heteroscedasticty and
nonnormality tests presented. For moderate sample sizes in the range of 100
to 250 the ()('I"") approximation to the distribution function are found sub-

stantially better than chi-squared approximation.

Wald statistics which are based on different but algebrically equivalent re-
strictions have the same asymptotic distribution under the null. But the stud-
ies show that these statistics may be divergent in small samples. Phillips and
Park (1988) tries to explain this phenomena by using a general Edgeworth
expansion of Wald statistics. By various examples from the literature they
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that the finite sample distribution of the Wald statistics for testing nonlinear

restriction can depend substantially on the algebric form of the restriction.

Gurmu and Trivedi (1992) is an example related to the application of asymp-
totic expansions in the analysis of discrete count data. They derive adjustment
factors of the overdispersion tests for truncated Poisson regression models.

Through Monte Carlo investigation it is shown that asymptotic expansions

improve the performance of these tests.

2.3 LR, Wald and LM tests

Empirical verification of hypothesis is very important in economics. The hy-
pothesis testing is an important tool of this kind of analysis. In this section
the most commonly used test procedures: the LR, Wald and LM tests will

be discussed. But first, some definitions about hypothesis testing will be pre-

sented.,

2.3.1 Definitions

Hypothesis testing has only two outcomes. A statement of the hypothesis
is defined as null hypothesis (Ip). If the data fall in a particular region of
sample space called the critical region then the test is said to reject the null
hypothesis. Since there are only two possible outcomes, there are two ways
such a procedure can be in error:

Definition 8 Type I error occurs when the null hypothesis rejected when it

is true. Type II error occurs when the null hypothesis incorrectly accepted.

Definition 9 For any test the probability of Type I error is called as the size

of the test, which is denoted as a and also called as significance level.



Definition 10 The power of a lest is the probability of rejecting null when

it is false. So;
power =1 — 4,
where § denotes the Type 1 error.

Definition 11 Let the data & are generaled by a density funclion f(x,0) and
the wall hpothesis be 1y 2 0 € O versus the allcrnalive Hy 2 0 C Q. For any
test T', suppose R(T,0) be the probability of rejecting the null when 0 is the
true paramecter. Let T, be the set of all tests of size a. For any 0, € ©,, the
mazimum possible power any test of size o can atlain is given by the power

envelope 3% defined as follows:

B5(0y) = sup R(T,0,).
Tela

The shortcoming S of a test T € T, at some alternative hypothesis 8, € O,

is the gap between the performance of 1" and the power envelope;

S(T, 01) = ﬁ;(()l) - 11),(71, 01)

We can define also the shortcoming of a test over all 0, € Oy as;
S(T,0,) = sup S(T,0,).
61€0,
S(T,©,) measures the mazimwn gap belween the power envelope and the power
of a given test, and will be referred to as the shortcoming of the test. A test
having the smallest possible shortcoming in the set T, of all lests of level o, is

called « most stringent lest of level o for testing Hy against 1
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2.83.2 Three Test Procedures

In this section a general formulation of the three tests will be presented.

Let the data x are generated by a joint density function f(z,0,) under
the null hypothesis and by f(z,0) with & € R* under alternative. Let
be the unconstrained maximum likelihood (ML) estimator and let § e the
ML estimator subject to the constraint imposed by the null hypothesis. The
log-likelihood is defined as L(x,0) = logf(z,0) and the score as S(z,0) =
dL(z,0)/d0. The information matrix is defined as,

O*L
A

Z(0) =
Let 0 be ML estimnator. Then it is possible to show that,
Var(0) = I7'(0).

The Wald statistic is,

W = (0 - 00YZ(0)(0 - 0y),

was introduced by Wald (1943).

The LR lest was suggested by Neyman and Pearson (1928). It is based on
the difference between maximum of the likelihood under null and alternative
hypothesis. So, the LR statistic is

LR = M
J(x,0)
Clearly, LR takes values in interval [0,1]. Equivalently, the test may be carried
out in terms of statistic

L = —2log(LR).

which turns out to be more convenient for asymptotic considerations.
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While the Wald test is based on unconstrained ML estimator, LM test is
based on the constrained ML estimator. If the constraint is valid, the con-
strained ML estimator should be close to the point that maximizes loglikeli-
Lhood. Therefore, the slope of the loglikelihood function should be close to zero
at the constrained ML estimator. It is first suggested by Rao (1947) and since
depend on the score functions called also Rao’s score function. It can be shown

that, the score has mean zero and variance Z(60y) under the null. Therefore
LM = 5(z,00)'Z(06)S5(, 00, ).

reject the null for high values of the statistic.

Theorem 6 Under general conditions, the statistics W, L, LM, converge in

distribution to X? distribution witk k degrees of freedom under the I.

Proof: sec Serfling (1980:155).

The LR test is difficult to compute since it uses the ML estimator from
both constrained and unconstrained maximization ol the loglikelihood. But
for Wald test unconstrained ML estimator and for LM test the constrained ML
estimator is needed. In complex model LR test may therefore very difficult
to compute relative to the Wald and the LM tests. But the increased use of

computers make LR test also applicable.

2.3.3 Approaches to Compare Test Statistics

There arc a lot of procedure to compare the test statistics. Serfling (1980) in
Chapter 10 discusses six different approaches. These are Pitman, Chernoff,
Bahadur, Hodges and Lehmann, Hoeffding, Rubin and Sethuraman. There
are also other approaches. Local methods compare tests in a shrinking neigh-

borhood of the null hypothesis. Pitman efficiency is one of them and the most
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popular and widely used criterion. The nonlocal methods compare test per-
formance at a fixed element in the null and the alternative. Bahadur efficiency

one of the nonlocal methods, looks at the rate at which the power goes to one.

The concept of stringency is introduced by Wald (1942) to compare the
performances of test statistics. The definition of the concept is presented in

Section 2.3.1 The comparisons of the test statistics in Section 2.4 will be done

according to stringency.

2.3.4 Asymptotic Equivalence of the Test Statistics and Higher Or-
der Efficiency

Engel (1984) shows that the Wald, Likelihood Ratio and Lagrange multiplier
tests statistics are distributed .2 asymptotically under the null hypothesis and
have the same non-central X'? distribution under local alternative for testing
multivariate hypothesis. Furthermore it is found that these tests are asymp-

totically locally most powerful invariant tests. So these statistics are called as

asymplotically equivalent.

If the threc tests are asymptotically equivalent the choice of them be accord-
ing to ease of computation. But finite sample behavior of the tests especially
in small samples are found different in some of the studies (see for example

Bernt and Savin (1977) and Evans and Savin (1982)).

Since higher order expansions produce better approximation for small sam-
ple sizes, the validity of the results related to asymptotic equivalence of test
statistics may be questioned through higher order approximation methods.
Rothenberg (1984a) uses third order approximation to the local power func-

tion to compare the performances of LM, Wald and LR statistics. He benefits
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from Edgeworth approximation in his calculations. Ilis results mainly depend
on Pfanzagl and Wefelmeyer (1978). First he gets the adjusted critical val-
ues for the three tests by using Cornish Fisher expansion derived in Section
2.1.4. Then insert them to the third order power function. So it is possible
to compare third order power function with the third order power envelope.
As a result it is found that, each test are tangent to the power envelope at
different points. The LM dominates all others when power is approximately
a, the Wald dominates other when power is approximately 1 — «, the LR test
dominates at power approximatcly one-half, but none of the tests dominates
each other. Amari et al. (1987) get similar result through the third order

approximation of test statistics (see Figure 7 in Amari et.al (1987:5)).

The analysis done for the multiparameter case have the following result: For
the normal linear model the power surfaces crosses and no one is uniformly
superior. In nonlinear models LR test has optimal power characteristics in

central region of the power curve (see Rothenberg (1984a) for details).

The nonlocal approaches also supports the LR test. Hoeffding (1965) and
Brown (1975), Bahadur (1966), Kallenberg (1982) establishes the superiority

of LR to other tests.

2.4 An Auotocorrelation Example

The purpose of this section is to compare the performance of LM, LR and the
Wald test for testing autocorrelation by using higher order expansion of the

test statistics.



Consider the stationary AR(1) model:
Y = pYi— + & for t = 1,2, ,T
where yo ~ N(0,1) and &, ~ N(0,0?) and 02 = 1 — pZ.
We test the null hypothesis p = 0 versus alternative p = p, for some fixed p > 0.
Let y = (o, ¥, ---, y7)’-The likelihood function can be written as:
() = Uyo)(1]yo)---Uyely(e-1); Y(e-2)---yo)
So it is equal to
2 1 (ye = pyi-1)? 1 b
l exp — ——————— | X ap — =
=T (- S 2) « (e 4)

The Neyman-Pearson (NP) statistic is;

l(ylp = p)
NP IS L U A
(07/)1) l(y|p=0)
(1- p'f)('TmeﬂfP(—(,l—,,:») Z;F 1 (¥ = prye-1)?)
N])(Oapl) =
Zt ) Y1)

exp(—

Dropping the constant term and taking logs the Neyman Pearson test takes

the following form:

, T T
1 1
NP™(0,m) ‘,(—1'7 E (7 = 2y + piyl) + 5 E :' ts
t=1 =1
, T T
L 2 : } : 2 2, 2
= Yilf—1 — P yr + 0.50(ys +vyyr) |-
(l — pf) (t=I YelYi—1 — Py 2 Yy (Yo + i ))

Dropping the constant py /(1 — p3)), NP statistic becomes;

T T
NP™(0,p) =) o1 —pi (Z y; — 0.5(y; + y?-)) :

t=1 t=0
In order to get higher order approximation of the NP statistics we need to

standardize it. Using the following Lemma’s it is possible to get the formula

of the first and second cumulants of NP.
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Lemma 5 Let A be a real diagonal matrix, and w ~ N(0,1). The cumulants

kn(h = 1,2,...) of the distribution v'Au are
gn(w'Au) = 25D (h — NYrAk.

Proof: sce Magnus(1978:203).

Lemma 6 Lct A be a symmelric malriz, and ¢ ~ N(0,V), where V is posilive

definite. The cumulants &,(h = 1,2,...) of the distribution ¢'Ve are
kn(e'Ve) = 20D (h — 1)ltr(AV)E,

Proof: Since V is positive definite, there exist a unique, positive definite

and symmetric matrix V2 such that V'/2V1/2 = V. Let T be an orthogonal

matrix such that

T'V2AVIE] = A,
where A is a diagonal matrix containing the cigenvalues of V'/2AV'/? on its

diagonal. Then

g Ae = (eVIATYT'V\RAVIAY TV ) = w! A
Hence
k(' Au) = K, (e'Ve),
and
trA" = tr(T'VD AV DT = 1AV

The last equality follows from properties of trace.

NP statistic can be written as follows:

NP™(0,p) =y'My for y~ N(0,%),
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L

L= pli=il where ¥;; denotes the i,j’th element of the covariance matrix.
j‘/l = —pll + 0.5[)]([’]]] + E’]'-H,T-{-I) + 05J,

where I'is an (T'+1) x (T +1) identity matrix; E; ; is an (T'+1) x (T +1) matrix
which consist ones at E[i,i] and zeros everywhere. J is a (T +1) x (T + 1)
symmetric matrix, which has ones on the first sub and super diagonals and

zeros at the rest.

According to Lemma 6, &;(y'My) = 297" (j — )ltr((XM)?) The first cumnu-
lant and second cumulant under the null hypothesis can be expressed in simple

formulas.

ki(pypr) = T(p—p,), (6)
£1(0,p1) = =Tpy, (7)
k2(0,m) = 2Ar((EM)?) =T +2(T - 0.5)%. (8)

But for the higher order cumulants the formulas becomes too complex.

Then the NP statistic is standardized so that;

NP0 T :
NPl(O,p[) — ( 7P1) + pl . (9)
VT +2(T =0.5)p,2

2.4.1 Critical Values

We considered 5% significance level tests. In order to obtain sample value of

NP’ statistic, y, for t = 0,1,...,T are generated under the null hypothesis;
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where ¥, 9N (0,0%) under the null. The time series length T for NP’ statis-

tics begins from 1 until 100.

We get NP’ statistics for 20 different p,; where p; = 0.05,0.10,...,1 from 1

to 100 number of observation. So NP0, py) is a (100 x 20 ) matrix.

.Our first choice for the critical values was with reference to its asymptotic
distribution to give a nominal size of 0.05. According to central limit theorem
NP’ is distributed standard normal. For each p, with a 10.000 Monte Carlo
sample size we counted the number of times NP'(0, p;) > 1.645 where 1.645 is

5% critical value for standard normal density. So we get empirically calculated

probability of P(NP'(0,p,) > 1.645).

The asymptotic distribution of the statistic should converge to standard
normal distribution. But as it can be seen form [Figure 1 the convergency is
accuring slowly. The empirical size reached to 0.045 for p < 0.5 and to 0.04
for p > 0.5, from 30 to 100 observation. In order to improve the accuracy
we applied second order approximation to critical values (cv), so obtained

adjusted critical values. Since by Edgeworth expansion

kh(cv? — 1)

6 )

P(NP' < cv) = ®(cv—
it is possible to say that

cv — kh(cv® —1)/6 ~ 1.645.

Solving the equation

s Y — 4K (6 645 — :!
6 \/36 4'\,‘,(6 x 1.645 "’J) (10)
2k}

cv =
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we get the critical values, where cv is a (100 x 20) matrix, &3 is the third

. t .
cummulant of NFP'(0, p;) can be written as;

&3(07 Pl)
£2(0, py )3/’

follows from properties of cumulants stated in Lemma 2.

Az
ﬁ,.‘ =

Our main concern was to express ¢v as a function, which depends on p,

and . So it can easily be replicated without using simulations. For a fixed ¢,

depending on p;, cv has some quadratic form.

Looking OLS results
év(t, py) = a(t) + Bi()ps + Ba(D)p® + Bs(H)pr® t=1,2,...,100
is found to be a good fit of the cv for each ¢t. Various other functional forms
were also checked, but they didn’t performed hetter than the estimation given

above evidenced by high R? and t values of the coefficients. So we get o and

B’s as the regression result, where each coeflicient is a (100 x 1) matrix.

But we also have to add time period ¢ as a regressor to the estimation.
According to asymptotic theory;
lim B;(¢) =0 for : =0,1,2,3
{—o0

where fp = a — 1.645.
We estimated

b
(1) = — 1=0,1,23 t=1,2,...,100
,Bz(t) (t _ C)a + € 0 01 [d)

through estimating the coefficients a, ¢ which are the best fits for 8; by

regression. Finally the function for 5% critical values takes the following form,
e'(L,p1) = 1.645+0.106(t — 10)7>/* — 3.885(L + 15)™%%p,
+4.749(1 + 10)™%%p, 2 — 1.867(1 + 5)"*°p,
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The critical values calculated above was very close to critical values found
in Equation (10). The maximum absolute error from 20 to 100 observation is
0.004 and the error drops to 0.002 from 30 to 100 observation. The theoreti-

cally calculated critical values is presented in Figure 3.

2.4.2 The Power

After the calculations of critical values, it is possible to find the power empiri-
cally. By using Monte Carlo simulation, we have found P(NP' > cv(l, p1)|p),
where p = 0,0.05,..., 1. Here the Monte Carlo sample size is 10.000. So we
get a (100 x 420) matrix. The first 20 colums of the matrix consist of the em-
pirical power of NP’ statistics for p = 0 and p; = 0.05,0.10, ..., 1 respectively.
This is the empirical size of second order approximation (see I'igure 2). The
maximum difference from 0.05 is 4-0.005 beginnig from 50 observation and the

empirical size is converging to 0.05 as the time series length increases.

It is also possible to get power curve through theoretical formula. We benefit
in this case from Edgeworth approximation. In order to apply the Edgeworth-
B expansion we have to standardize NP’ in Equation (9).

w _ NP —E(NP'|p)

NP = )
‘ VVar(NP'|p)

where
E(N P|p)) = £1(0, p1)

BNEl) = =G
Tp
VT +2(T =0.5)p%
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KZ(/’? /71)
""2(0’ /’l)’
ra{p,pl)
VT +2(T-05)p°

Var(NP'|p)

The results follows from Equations (6)-(7).

It is clear that
P(NP' > ev'(t,p1)lp) = P(NP" > ev' (1, p1)]p)

where
" CUI - IB(NI)’I/))
cy = .
vV Var(NI|p)

Now it is possible to apply second order Edgeworth expansion for the power

as:

w Ky((cv")? —1)

P(NP" > e (t,p)|p) =1 = F(cv") = 1 — ®(ev” — c ), (L1)
5

where ® is the cumulative distribution function of a standard normal random
. "o, . N7 . .
variable and 4 is the third cumulant of NP° We have also applied the third

order approximation to the power as

1 - F(cw") =1 —d(cv” — “g((cv'(;)z —1) + '“4”(300';;' (cv")”) n rc:s"(8(cv"7); - lev”)

After the calculation of empirical and theoretical power, we checked the
difference. The second order expansion found to be a better approximation
to empirical power. The maximum absolute error is around 0.02 from 30 to
100 obscrvation for p < 0.5 and is decreasing as ¢ increases. I'rom 60 to 100

observation the maximum absolute error is around 0.01 for p < 0.5.
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Now it remains to find a formula for theoretical power. Define

w o K4 ((cv")? = 1)
)= =22 .

Some of the terms in matrix a was too small. In order to simplify the problem
of finding a functional form, the matrix elements smaller than -2.5 replaced as

-2.5. This is possible since if # < —2.5 then 1 — ®(2) ~ 1.

2.4.3 The Power Envelope

It is possible to get power envelope from the power of the NP test. Let amaxp
consist of 1,21,42,63,...420’th colums of matrix a. 1 — ®(amazxp) will give the
maximum power. Following the steps to get the approximate formula for crit-

ical values in subsection 2.4.1, we approximated amazp and get a formula for
power envelope.
So we have found the approximate formula for the power envelope ;
amazp'(L,p1) = 1.645 427007 — 0.6(L + 10)*p,,

which is a good approximation to amazp(t,p1). The diflerence between
1 — ®(amazxp) and | — ®(amaxp’) checked. The maximum absolute error
is found 0.019 from 40 to 100 observation, 0.016 from 50 to 100 observation,

0.014 from 60 to 100 observation (sce Figure 4 and Figure 5).

2.4.4 Lagrange Multiplier Test
Lagrange multiplier or locally most powerful test is

LM = lim NP(0,py)

p1—0
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In order to obtain a formula for LM statistics we get the alm matrix, which

consist of 1,21,41,...401 colums of matrix a.

Following the same procedure to get the formula of critical values in section
2.4.1, we have the formula for almp(t, p,) as ;
alm/(t, ;) = 1.645 — 531.5¢t7% — 0.62936(¢ + 7)"%py + 0.00649(¢ + 46)"*p?
+0.685(L — 14)%4 1
The difference between 1 — ®(alm) and 1 — ®(alm') checked for p < 0.8. Max-

imum absolute error is found 0.014 from 30 to 100 observation (sce Figure 6

and 7).

2.4.5 The Wald Test

For the higher order approximation of Wald test we used the standardized
statistic developed by Rothenberg (1984a), which can be written as:
VT(p—p)

V1= p?

W =

where

R 1‘/'2‘/—1
= : (12)
P= iy + R —d))2

here y = (y1,..,y7) and y-1 = (Yo, ..-y7-1). P is a modificd ML estimator,

which has the property that always taking values in the interval (-1,1).

Following his procedure let o« = p/+/1 — p?

W = ——-@— —VTa.
V1= p?

Since y = py_1 + &, 02 =1— p? and using Fquation (12) we get,

W = ( yLe oy} - yé’)) (y’_,y_, - yg)q.
VT 202T a?T 92T
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So

W= (X - i‘/;) (1 + I—")_', (13)
where

P WLE g Yyt i —yd)/2-T9  yh -

) _02\/,'7’ k= oT ’ T 902

By expanding the second term in paranthesis at equation (13) in Taylor series

and dropping terms of order T3/2

VA K K?
W= (x -2 (J——+—~),
K-\ -7t
, (XK+aZ XK*+aKZ
X - ( ) ; Tarz
vT 1
The approximate first four cumulants are;

_9 2 _
EW') = \/‘:76:; Var(W') =1+ 7aT 2;

—ba ; 6(10a? — 1)
Ky = —=; Kq= ——F—.
3 T 1

T

The Edgeworth-B approximation to the distribution function is

a(w? +1)  w(l +4a6?) + w3(1 + 6a?)
<w)=d | _
PW<w)y=o |w+ i + AT (14)

It is possible to find the %5 ‘critical values from Equation (14) putting p = 0
So we get the critival values from the following equation

(cv + cv®)

) = 0.95.

F(cv) = ®(cv +

where cv is a (100 x 1) matrix. By using the Cornish Fisher expansion, it is
possible to obtain the critical values

. (o + 3)
' = o =
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where e, = 1.645. The maximum absolute difference of ev’ from ev is 0.00:34

for 30 to 100 observations. We calculate also I’( \/(l)p > cv'|ly) through
Monte Carlo. It is approximately 0.05, which has an error less than +0.005
from 7 to 100 observations. Iollowing the same procedure of the former sec-

tions, we can get the empirical power P(\/(T)p > ev'|11,).

The theoretical power can be calculated by the Equation (14) as

mz 4 " 2 L IN3 2
1—-P(W < Cv"l{h) =1—® [cv"-{- Of((cv\/)TJ‘ 1) n (1 + 4a )-:;160 ) (1 + 6a*)
here

7 (Cv’ — \/T[))

C - ——
Vi-p?
follows from the fact that
A o
PVTp > ey = P [ YIE=0) = VT0))
VI-p2 = J1-p?

Maximuin absolute error of theoretical power is 0.0156 for 30 to 100 observa-

tion For p; < 0.5 it is less than 0.01. The maximum absolute crror is 0.01 for

40 to 100 observation (sce I'igure 8 and IFigure 9).

2.4.6 The Likelihood Ratio Test

LR statistic is defined as;

_lylp=0)
Wylp = p)

T
A= C:L'p(—-;- D y7)
- r :
(1 = )T exp(~ sty Timr (9 = Ayi-1)?)

where p denotes the ML estimate of p, calculated according to the formula in

Section 2.4.5 as,

ZLI YelYi—1
T y ¢ :
Do Vi + (¥ —v3)/2
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It follows that,

T ! T
Is A l N a2, 5
—~2logh = —Tlog(1 - p*) + Zy? i Z(y? — 2pyyet + Pyly)
i=1 t=1
2/,\) T T
= —Tlog(l — p*) + I~ <Z Yol — (Z y: —0.5(y2 + 7/3))) ‘
=1 [=(0)

Our hypothesis testing problem is one sided with inequality of the constraints
on the regression coeflicient. The asymptotic approximations stated in The-
orem 6 is not applicable to this problem. But the asymptotic distribution
of the LR statistic in the presence of boundary constraint discussed in some
researchs. Sell and Liang (1987), Gourieroux et.al. (1982) are some of these
studies. Instead of using asymptotic approximations, we have benefit curve
fitting technique to get approximation to the empirically calculated distribu-

tions in this section.

For the calculation of critical values as in the former sections we conducted
Monte Carlo simulation as the first step. The simulation designed as follows.
We sel p = 0. Generated 1000 samples of y, under null hypothesis. We calcu-
lated the LR statistics. I3 = ZZ:l Yyi—1 < 0 is replaced by 0. Since il B <0,

ML estimator becomes negative. So for I3 < 0 we have LR statistics equalt to

0. We sort the LR statistics from low to high.

The 880th,890th,...950th..,990th observations are kept as initial estimates
of critical value (cv). Then we calculated P(LI > cv|Hy) for each cv. Finally
through interpolation by using these set of cv’s and related probabilities, we
tried to find cv’ which give the 5% critical value of LR test. These proccdure

repeated [rom 1 to 100 time series length. So cv’ is an (100 x 1) matrix.

As the next step we approximate a formula for the empirically calculated

critical values. Looking OLS results,

cv” = 2.64 + 0.00061T
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found to be a good approximation to cv’. We checked P(LR > cv”|Hyp). 1t is
around 0.05 with an error £ 0.005 from 10 to 100 observation. To obtain the

power we calculate P(LR > cv”|ll}) again through Monte Carlo.

For the derivation the approximate power curve, first we obtained alr, a

(100 x 20) matrix where
P(LR > «"|H)) = | — ®(alr). (15)

This is done through computer programming. With the same techniques in

Section 2.4.1 we tried to find a formula for alr. Looking the OLS results
(Ll’l" = [.645 — 0()(71 1 17)()_Gp

found to be a good fit.

Inscrting alr’ instead of alr in Equation (15), we get the approximate power
curve of LR test. Maximum absolute error of approximation is 0.023 form 40
to 100 observation and 0.016 from 50 to 100 observation (see Figure 10 and

Figure 11). So we derived the approximation to LR statistics without the use

of higher order formulas.

2.4.7 Comparisons

After obtaining the theoretical approximalions, we compared the performances
of LM, Wald and LR test, according to stringency defined in Section 2.3.1
Figure 12 and Figure 13 present the power curves of the LM test for 50 and
100 observations The figures are drawn according to the theoretical formulas.
It is observed that the power envelope of the LM test shift upwards and the

shortcoming of the test decreases as the number of observation increases.



One property related to power of LM test is, it dips down near p = 1. This

makes the test weak in terms of stringency.

Figure 14 and 15 present the power curves for the Wald test. It is almost
same with the maximum power curve. Ior the LR test looking to Figure 16

and 17 we observe a similar result.

Figure 18 provides the shortcomings of the LM, Wald and LR tests ac-
cording to their emprically calculated power curves. Figure 19 compares the
performance of the threc tests this time by using their theorctical approxi-
mate power curves. The conclusions obtained [rom the two approaches are the
same. The shortcoming of the LM test is around 30% for 30 time series length
and decreasing as the number of observation increases. It becomes around 5%
when the number of observation reaches to 100. The Wald and LR test has
equal performance according to stringency. The shortcomings are less than 1%
for both of the tests. There is a strict conclusion that the LR and Wald tests

outperform the LM test by testing the first order autocorrelation coeflicient.
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CHAPTER III
TESTS FOR NORMALITY BASED ON ROBUST
REGRESSION

In this chapter we will examine the effects of using residuals from robust regres-
sion instead of OLS residuals in test statistics for the normality of errors. The
first part of this chapter will introduce the Jarque Bera and Doornik llansen
tests, which are two well known tests for normality. Robust estimator LTS,
used for the normality tests is described in Section 3.2. In Section 3.3 the
test statistics based on LTS estimator is presented and some examples from
Rousseeuw and Leroy data sets will be reported. In Section 3.4 we conduct

simulations. Finally in Section 3.5 we apply the test statistics to data sets

from economic literature.

3.5 Diagnostic Tests for Normality Based on Least Squares

Residuals

The violation of the normality assumptions in regression residuals may have
important results. Therefore many test statistics devised to test the normality
of residuals. Jarque and Bera (1987) (JB) and Doornik and Hansen (1994)
(DI) tests are the most popular among these tests. In this section we will

introduce these tests.

Definition 12 Let z be a random variable, jt denote the mean and p; = E(x—

i)} be the i’th central moment of x. The skewness and kurtosis are defined as:
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Sample counlerparts ave defined by

‘i". jv’ m; = Z(’Bt

Sample skewness and kurtosis is;

msy m,y
\/(b]) = 372 and 1)2 =
' mi/ ma

‘2

The JB test is based on a weighted average of the sample skewness and

kurtosis

(VBi)® | (b2 —3)°
6 T m )

JB = T(

JB (1987) show that the test performs quite well relatively other tests, avail-
able in the literature. They show that the test is a Lagrange multiplier test
if the alternatives to the normal distribution are in the Pearson family. As
pointed in Section 2.3.2, the LM test is asymptotically chi-squared. But as
Urzua (1996) points out the performance of the tests depens on the use of
ciritical values determined by Monte Carlo simulation, since the convergence

of the distribution to chi-squared A’} distribution is slow.

Doornik and Ilansen (1994) developed an omnibus test based on Shenton
and Bowman (1977) for normality. Let z; and z; be denote the transformed
skewness and kurtosis. Doornik and Hansen suggest that the transformation

creates statistics which are much closer to standard normal. So,

DH = 2} + 22



is approximalely chi-squared X2. They show that their formula is closer to chi-
squared than the JB formula. The explicit formula of z; and z; is presented

in Appendix.

3.6 A Robust Estimator: LTS

The OLS estimators are effective under the hypothesis of normality of errors.
But there are cases where this hypothesis is not satisfied. The data may include
outliers. In that cases the nonnormality of the errors are not easily identified
by the OLS residuals, because nonnormal errors may easily be masked by the
OLS analysis. As an example consider the Figure 20, where five points lie
nearly on a straight line, and one point is an outlier. One outlier make OLS
estimate to misbehave. The OLS line has a negative slope and the residual of

OLS does not reveal the outlier.

The robust estimators are devised as a remedy to this situation. These
estimators are robust in the sence that they work well in the failure of the
normality of errors assumption. They are not so strongly affected by outliers.
The least trimmed squares (LTS) estimator is one of these robust estimators.
It is introduced by Rousseeuw (1984). This has the property of being highly

resistant to a relatively large proportion of outliers.

Definition 18 Let r2(B3) be the squared residual of the t-th observation. Let
rty(B) < riy)(B) -+ < rip)(B) be a rearrangement of the residuals in increas-
ing order. The 50% trimmed LTS estimator is defined to be the value of B

C e T/2 - . .
minimizing Zt__{l 1'(20, where T is the sample size.

Let S be any subsample of original sample, for the 50%trimmed LTS estima-
tor it consist half of the data ,s0 its size is T/2. Let B(S) and SSR(S) be

the least squares estimator and sum of squared residuals for this subsample.
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Let S* be the optimal subsample of original sample, means that 8(S5*) is the
LTS estimator. Irom the definition the following corrolary follows: Since S*

is optimal if one inside element is swapped with an outside element then SSR

should increase.

Computation of the LTS is diflicult as well as other robust estimators. But
through following algorithm described in Zaman (1996), it is possible to com-
pute LTS estimator. We choose any subsample S with size (7/2) from the
original sample. We calculate SSR(S) for this subsample. Then we begin to
swap each inside element with an outside element. If the SSR is reduced we
start over with the new selected subsample containing the swapped element.
Since the SSR is reduced at each step, we will reach a subset (5*), where no
further swap produces any reduction. The least squares estimator 3(.5*) will

be the LTS estimator,

For details regarding the technique and its properties, see Rousseeuw and

Leroy (1987), and also Chapter 5 of Zaman (1996).

3.7 The Normality Tests with LTS Estimator

As discussed in Section 3.1 both JB and DH are calculated on the basis of OLS
residuals in standard analysis. But as we pointed out in Section 3.2, the OLS
estimator can highly be influericed by the outliers. Since the robust estimators
reveals the outliers, it may provide a clearer indication about lack of normality
of residuals. In this section we will use the residuals of LTS instcad of OLS

residuals for JB and DII tests and try to sec the cffect on some real data sets

which includes outliers. But first we calculated the significance points for each

tests.
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We conducted a Monte Carlo simulation to obtain the significance points of
the JB and DH statistics and their robust versions (called as JB* and DH*).
n observations are generated from N(0,1) distribution. Following Jarque and
Bera (1987) the regressor matrix X consist of a column of ones and three
colums of uniform random numbers. These matrix is same for each replica-
tions. Since the estimated error ¢ = (I — X(X'X)~' X")e does not depend on
true 8. The dependent variables can be calculated regardless of the value taken
by 8. After having the dependent variables and regressor matrix, it is possi-
ble to get OLS and LTS estimators. LTS estimators are calculated according
the algorithm discussed in Section 3.2. JB, DH and their robust versions was
calculated from the estimated residuals. This procedure is repeated 10.000
times; the a(10.000)th largest valuc is our « significance point. The signifi-

cance points of the tests are presented in Table 1

Table 1: Significance Points for Four Tests for Normality

n JB JB* DH D

10% 5% 1% | 10% 5% 1% 1 10% 5% 1% | 10% 5% 1%
201236 363 907449 783 18.06 | 142 584 899 | 6.55 840 13.11
50| 3.21 4.83 1294 (478 7.797 1899|439 591 949 (528 724 11.65

*10.000 replication.

Rousseeuw and Leroy (1987) use some data sets for their analysis related
to robust regression. Through these data sets they show the high influence of
outliers on OLS estimates and the benefits of the usc of robust cstimators. As
a preliminary test of the validity of our basic idea, we conducted a study of

tests for normality on five of these data sets.
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Table 2: The Values of the Normality Test Statistics from Rousseeuw and

Leroy Data Sets

Series n JB  JB* DH DH~
Brain 28 193 2624 265 27.88
Cloud 19 223 1062 295 15.05
Salinity 28 0.03 3346 1.20 16.20
Stackloss 21 0.14 6.87 168 7.1
Aircraft 23 0.17 57.88 1.26 1230

*Rousseeuw and Leroy (1987) from p. 57-96-82-76-154.

It is clear from Table 2 that the techniques uses OLS residuals fails to reject
the null hypothesis normality with both JB* and DH™ statistics. But the
stalistics with LTS residuals reject the null at 10% significance level. For most

of the cases rejection at 1% significance level is observed.

Since the presence of big outliers (corresponding to lack of normality) in
these series is well known, we see that JB and DH tests, conducted on the
basis of OLS residuals can lead to wrong conclusions. This result directed us

towards to examine the situation with simulated data.

3.8 Power Comparisons

We investigated the power of the tests as in Jarque and Bera (1980) with
four alternative distributions; beta(3,2), Student’s t (5), gamma (2,1) and log-
normal. Additionally we used Cauchy distribution, since its distribution has
heavy tails. Following a similar procedure for the calculations of critical values,
we generated the true residuals from the listed alternative distributions and
obtained normality test statistics accordingly. For a Monte Carlo sample size

10.000, we count the number of times the statistic exceeds the critical values
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given in Table 1. Dividing this number to 10.000, gives an estimate of the

power. The results are presented in Table 3.

Much to our surprise JB and DH based on conventional OLS residuals
outperformed JB* and DH*. The increase of the number of observations and
the change of the percentage trimmed did not change the results, therefore
not reported here. The alternative distributions used frequently for power
comparison of tests for normality is not able to explain the situation with

Rousseeuw and Leroy data sets.

Table 3: Estimated Power for n=20

Series JB JB* DH DH*"
Beta 0.06 0.12 0.08 0.10
t 0.26 0.23 0.25 0.20

iamma 0.39 0.29 037 0.29
Lognormal 0.74 0.60 0.74 0.62
Cauchy 082 0.76 0.83 0.77

*10.000 replications, a= 0.10.

Therefore we conduct new simulations through the use of mixture of normal
distributions as the alternative to the null of normality. In the examples related
to failure of OLS in Section 3.2 we observe that the outliers lie in clusters.
(For an example see Rousseeuw and Leroy (1987) p.58). In order to sce the
effect of this situation the new simulations are conducted as follows. The
regressor matrix consist of one column of ones and one column of uniform
random variables. Then the matrix is sorted from low to high. In that way,
the outlicr generated next to each other would also lic next to each other.
The significance points related to new regressor matrix are presented in Table
4. This time the significance points for the LTS tests are calculated for 20%

trimmed LTS test statistics.
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Table 4: Significance Points for Four Normality Tests with New Regressor

Matrix

n JB JB* DH DH*
10% 5% 1% |10% 5% 1% | 10% 5% 1% | 10% 5% 1%

20 | 234 358 892|334 515 1223|443 591 932|505 657 10.31
50 | 3.17 5.13 12.78 | 382 6.50 14.55 [ 4.50 590 10.06 | 4.92 6.40 10.64

*10.000 replication.

In order to make a comparison we generate also outliers in random places
in samples. The first case, where the outliers lie in clusters is called as Case
A and the second case, where they are in random places as Case B. In Table
5 the results for 20 and 50 observation are presented. In all cases 80% of the
true residuals are generated from N(0,1) and 20% of them from normal distri-
butions with different means and variances. So for 20 observations 4 and for
50 observations 10 outliers are generated. We matched the number of outliers
with the trimmed part of the statistics. Through this way the efficiency loss

of LTS procedure due to trimming the observations will be minimized. So the

LTS tests are 20% trimmed.

The results are in favor of LTS tests, if the outliers are generated fllrough
the shift of mean and they are next to each other. The power increase over
OLS tests is reached as much as 25% with 20 observation. But looking to Case
B the same improvement are not observable. So if the outliers are in randomn
places then the LTS is not so-powerful. Also if the outliers has high variances
LTS tests does not improve OLS tests substantially. This can be again sup-
port our views that LTS performs better if the outliers are in clusters. With
balanced outliers, the OLS estimators is not much affected by the outliers,
and hence OLS residuals are similar to robust residuals. This also explains
why the Cauchy did not lead improved performance for JB* and DI™ as we

had expected. Outliers generated by a mean shift all lie on the one side of
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the regression and hence much more eflective in sistematically distorting OLS

cstimates.

Table 5: Power Comparisons of Mixture of Normal Alternatives with 20%

Qutliers under Different Conditions

n=20 Case A Case B Case A Case B
N(51) JB 031 074 DH 031 075
JB* 0.44 0.63 DH* 0.56 0.80
N(10,1) JB 042 094  DH 045 094
JB* 0.68 0.98 DH* 0.70 0.99
N(09) JB 054 054 DI 055 053
JB* 0.54 0.51 DI~ 0.58 0.53
N(0,16) JB 0.72 0.71 DH  0.73 0.71
JB* 0.73 0.71 DH* 0.76 0.71
n=50 Case A Case B Case A Case B

N(,) JB 059  1.00 DH 0.6l 1.00
JB* 0.8 100  DH* 087  1.00
N(10,1) JB 069 100 DH 074  1.00
JB* 075 100  DH* 087  1.00
N9 JB 08 08  DH 085 083
JB* 085 083  DH* 085  0.82
N(0,16) JB 096 095 DH 096  0.96
JB* 096 095  DH* 097  0.96

*10.000 replicaitons, a= 0.10.

(7]
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3.9 Applications

Through simulations we have shown that the residuals from robust regression
lead to improvement in rather specialized circumtances. In order to asses the

use of these tests on economic data sets, we made a few applications.

Table 8: The Values of the Normality Test Statistics from Tansel (1993) and
Metin (1998) Models

Tansel (1993) Metin (1998)
Model 1 Model 2 Model 3 Model 4 | Model 1 Model 2
n/k 98/6  28/5  20/5  28/7| 33/17  33/11
JB 0.72 127 083 130| 073 148
J B 44.68 25.15 6.99 7.07 | 1245.57 14.06
DIl 0.41 1.76 0.62 1.69 0.24 1.85
Dl 35.19 7.23 6.68 9.07 | 582.71 20.96

*k is the number of regressors.

LTS statistics are 50% trimmed.

First we applied our robust tests to models used by Tansel (1993) inves-
tigating the cigarette demand for Turkey. We repcated the regressions and
computed the normality test statistics. The results are presented in Table
6. Using the critical values from Table 1 it is seen that JB test [ail to reject
normality for all of the modcls as in Tansel (1993) We reached the same con-
clusion with the DH test. But il we use robust tests, the decisions of tests is
different in most of the cases. JB* and DI* reject the null for Model 1 at
1% significance level. JB* test reject the null for Model 2 at 1%, DH* test
al 10% significance level. Both LTS tests reject the null for Model 3 at 10%
significance level. JB* test reject the null for Model 4 at 10%, DH* test at

5% significance level. According to Orhan and Zaman(1999) these data sels



includes outliers, which implies the true residuals are not distributed normally.

Their results support the inference drawn from our robust tests.

Metin (1998) analyzes the relationship between inflation and the budget
deficit in Turkish economy. We replicated the first and second model there
and get the normality test results presented in Table 6. By using the critical
values in Table 1 it is seen that the DH test statistics fail to reject the null
hypothesis of normality for both of the models as in Metin (1998). Through JB
statistic result we also reach the same conclusion. But the results of robust test
are just the opposite. For Model 1 The JB* and DH* reject the normality
at 1% significance level. For Model 2 the JB* and DH* reject the null at
5% and 1% significance level respectively. Again the robust residuals suggest

significant nonnormality in the errors which are not detected by OLS regression

analysis.



CHAPTER IV
CONCLUSION

In this dissertation, we attempted to compare the power of the LM, Wald and
LR tests for the first order autocorrelation model through the approximations

to the distributions of these three tests firstly.

Accurate approximations to test statistics becomes great importance if the
exact distribution of the statistic is not known. Asymptotic theory provides
us approximation which are not accurate enough in most of the cases. In this
dissertation we have shown how asymptotic expansion techniques can be suc-
cesfully applied to some test statistics for a first order autoregressive model.
We obtained the statistics first empirically, then compared with our theoret-
ical approximations. We benefit from Edgeworth approximation through the
dissertation. Qur approximations has good accuracy for the sample size as
small as 30. It is always possible to apply other approximation techniques and
get better approximations for the smaller sample sizes. One of them is the

Saddlepoint approximation technique presented in Section 2.1.5.

One difficulty for the study of higher order approxiination, it is a new
research area and theoretic‘a.l formulas derived by statisticians are valid for
quite general cases. In order to apply in econometrics tedious calculations are
needed. This is also the reason for its slow spread in econometric applications.
But once the suitable formulation for the econometric 1)1‘61)16111 obtained, it is

possible to derive good approximations for many statistics. As it is presented
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in Section 2.2, the studies of higher order approximations have satisfactory
results in different topics of econometrics. But there are still many interesting

subjects for further research.

In this dissertation we have obtained first the empirical distributions of the
power envelope and three test statistics to compare the adeqacy of the approx-
imations. Hovewer, we get the corrected ciritical values before the derivation
of the powers. This step was very essential, since the application of inaccurate
critical values to a test affects the power of the test and could be misleading.
We have adjusted the critical values so that the true size of the test can become

close enough to nominal size of the tests. The nominal size in our experiments

fixed to 5% through the analysis.

As far as the approximation of the power envelope and the power curves
of the test statistics are concerned, we have found out that the second order
approximation is accurate enough for our purposes in general. With regard to

the LR test statistics, we have tried to fit a functional form and so obtained

our approximation as a result.

We have compared the performance of test statistics in the dissertation. Ac-
cording to the first order asymptotic theory, the local power of the LR, Wald
and LM test are the same. However first empirically and afterwards through
approximate power functions we have shown that the performances of the three
tests are different. In this respect, we have found that, Wald and LR statistic
have a strong superiority, becauese the stringency of these tests are found less
than 1%. On the other hand, the stringency of the LM test is too high for
small number of observations and reaches to 5% as the number of observation
reaches to 100. So we suggest strongly the use of LR and Wald test for the

test of first order autocorrelation as far as the stringency results are concerned.
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Our technique to approximalte test statistics can be applied in the different
reserch areas of econometrics. Hovewer, we recommend that unit root case
may be examined as a first attempt, which has both economic and statisti-
cal implications and attracted attention in the literature. Although many test
statistics have been devised to test the null hypothesis that a time series posess
unit root, the asymptotic approximation of test statistic is not extensively ex-

amined until now.

Another research topic could be to compare the performances of the test
statistics for the first order autocorrelation of the residuals. Especially the LM
test for the first order autocorrelation, which is called as Durbin Watson test,
is very famous amongst these tests. Regarding autocorrelation of residuals,
exact distribution of these tests also not known and the comparisons through
asymptotic approxiamtion to test statistics are not conducted in the literature

as far as we are concerned.

In the second part of the dissertation we have suggested to use robust es-
timators instead of the OLS estimator for the test of normality of regression

residuals. Regarding this we have shown by using real data that the tests using

OLS residuals may cause wrong conclusions.

Also through our simulations we compared the performance of the two ap-
proaches. In simulation study the choose of alternative distribution has become
importance. We have conducted simulation by using the framework of Jarque
and Bera (1987) firstly. With the use of the alternative distributions in that
study, power improvement over the standard normality (JB and D) tests

could not be ohserved.
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Afterwards we conducted new simulations, allowing for a larger set of al-
ternatives by using mixture of normal distributions. The results implies that,
when the outliers are clustered they have big distortion effect on the OLS esti-
mators and these situation lead to maximum improvement for tests based on
robust estimators. We have also shown on two applications, inference drawn

from the two approaches is differing.

Although the simulation result show the improvement of the robust test
under specialized situations, through real data it is stated that these situation
occur often enough in practice. This result support our views about the benefit

to use tests for normality based on robust regression as a diagnostic test.
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APPENDIX A

The Explicit Formula of z, and 2, for DH test
z1 1s transformed (rom \/I_)], as lollows;

3(n* +2Tn — 70)(n + 1)(n + 3)

S T DA D 49)
W=~ (8- 1),
6 = l 1/2°

(log(\/u?))

2 6(n —2)
2 = 6log(y+ (v° + ])1/2) .

y = Vb (‘”2 —1(n+ 1.)(n.|.3))1/2’

29 1s transformed from b, as follows;

§ = (n=3)(n+1)(n*+15n —14),
(n = 2)(n + 5)(n + 7)(n? + 27n — 70)

¢ = 66
(n—T)(n+5)(n + 7)(n? + 2n — 5)
© 7 66 ’
(n+5)(n+ 7)(n® +37n% + 11n — 313)
k = : ,
126
a = a+be,

X = (by—1—b)2k,

X\'"? 1 .
— kel - - /2
Zy = <(2a> 1 + 90) (90) .
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Figure 7: Approximation Error of LM Test
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Figure 8: Theoretical Approximation to Wald Test
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Figure 9: Approximation Error of Wald Test
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Figure 13: Power Envelope vs. LM for T=100
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Figure 17: Power Envelope vs. LR for T=100

79



Shortcoming

Shortcoming

0.16 0.24 0.32

0.08

K——\—Qq—.._‘_c‘___

e T - T

1 ] I 1 1 1

30 40 50 60 70 80 90 100

Time Series Length

—

:_"%‘TM———LJ/L\ 4
Il 1 L

0.00
’_

Figure 18: Empirical Shortcoming of LM, Wald and LR
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