2,960 research outputs found

    The oxygen isotope effect on critical temperature in superconducting copper oxides

    Full text link
    The isotope effect provided a crucial key to the development of the BCS (Bardeen-Cooper-Schrieffer) microscopic theory of superconductivity for conventional superconductors. In superconducting cooper oxides (cuprates) showing an unconventional type of superconductivity, the oxygen isotope effect is very peculiar: the exponential coefficient strongly depends on doping level. No consensus has been reached so far on the origin of the isotope effect in the cuprates. Here we show that the oxygen isotope effect in cuprates is in agreement with the bisoliton theory of superconductivity.Comment: 3 pages including 4 figures; version 2 is with minor correction

    The efficiency coefficient of the rat heart and muscular system after physical training and hypokinesia

    Get PDF
    The efficiency of an isolated heart did not change after prolonged physical training of rats for an extreme load. The increase in oxygen consumption by the entire organism in 'uphill' running as compared to the resting level in the trained rats was 14% lower than in the control animals. Prolonged hypokinesia of the rats did not elicit a change in the efficiency of the isolated heart

    Directed current in the Holstein system

    Get PDF
    We propose a mechanism to rectify charge transport in the semiclassical Holstein model. It is shown that localised initial conditions, associated with a polaron solution, in conjunction with a nonreversion symmetric static electron on-site potential constitute minimal prerequisites for the emergence of a directed current in the underlying periodic lattice system. In particular, we demonstrate that for unbiased spatially localised initial conditions, violation of parity prevents the existence of pairs of counter-propagating trajectories, thus allowing for a directed current despite the time-reversibility of the equations of motion. Occurrence of long-range coherent charge transport is demonstrated

    What is the true charge transfer gap in parent insulating cuprates?

    Full text link
    A large body of experimental data point towards a charge transfer instability of parent insulating cuprates to be their unique property. We argue that the true charge transfer gap in these compounds is as small as 0.4-0.5\,eV rather than 1.5-2.0\,eV as usually derived from the optical gap measurements. In fact we deal with a competition of the conventional (3d9^9) ground state and a charge transfer (CT) state with formation of electron-hole dimers which evolves under doping to an unconventional bosonic system. Our conjecture does provide an unified standpoint on the main experimental findings for parent cuprates including linear and nonlinear optical, Raman, photoemission, photoabsorption, and transport properties anyhow related with the CT excitations. In addition we suggest a scenario for the evolution of the CuO2_2 planes in the CT unstable cuprates under a nonisovalent doping.Comment: 13 pages, 5 figures, submitted to PR

    Influence of the sign of the coupling on the temperature dependence of optical properties of one-dimensional exciton models

    Get PDF
    A new physical cause for a temperature-dependent double peak in exciton systems is put forward within a thermal equilibrium approach for the calculation of optical properties of exciton systems. Indeed, it is found that one-dimensional exciton systems with only one molecule per unit cell can have an absorption spectrum characterized by a double peak provided that the coupling between excitations in different molecules is positive. The two peaks, whose relative intensities vary with temperature, are located around the exciton band edges, being separated by an energy of approximately 4V, where V is the average coupling between nearest neighbours. For small amounts of diagonal and off-diagonal disorder, the contributions from the intermediate states in the band are also visible as intermediate structure between the two peaks, this being enhanced for systems with periodic boundary conditions. At a qualitative level, these results correlate well with experimental observations in the molecular aggregates of the thiacarbocyanine dye THIATS and in the organic crystals of acetanilide and N-methylacetamide

    Atomic States Entanglement in Carbon Nanotubes

    Full text link
    The entanglement of two atoms (ions) doped into a carbon nanotube has been investigated theoretically. Based on the photon Green function formalism for quantizing electromagnetic field in the presence of carbon nanotubes, small-diameter metallic nanotubes are shown to result in a high degree of the two-qubit atomic entanglement for long times due to the strong atom-field coupling.Comment: 4 pages, 2 figure

    Correlation of optical conductivity and ARPES spectra of strong-coupling large polarons and its display in cuprates

    Full text link
    Common approach is used to calculate band due to strong-coupling large polaron (SCLP) photodissociation in ARPES and in optical conductivity (OC) spectra. It is based on using the coherent-states representation for the phonon field in SCLP. The calculated positions of both band maximums are universal functions of one parameter - the SCLP binding energy Ep: ARPES band maximum lies at binding energy about 3.2Ep; the OC band maximum is at the photon energy about 4.2Ep. The half-widths of the bands are mainly determined by Ep and slightly depend on Frohlich electron-phonon coupling constant: for its value 6-8 the ARPES band half-width is 1.7-1.3Ep and the OC band half-width is 2.8-2.2Ep. Using these results one can predict approximate position of ARPES band maximum and half-width from the maximum of mid-IR OC band and vice versa. Comparison of the results with experiments leads to a conclusion that underdoped cuprates contain SCLPs with Ep=0.1-0.2 eV that is in good conformity with the medium parameters in cuprates. The values of the polaron binding energy determined from experimental ARPES and OC spectra of the same material are in good conformity too: the difference between them is within 10 percent.Comment: 17 pages, 6 figure

    Anomalous tunneling of bound pairs in crystal lattices

    Full text link
    A novel method of solving scattering problems for bound pairs on a lattice is developed. Two different break ups of the hamiltonian are employed to calculate the full Green operator and the wave function of the scattered pair. The calculation converges exponentially in the number of basis states used to represent the non-translation invariant part of the Green operator. The method is general and applicable to a variety of scattering and tunneling problems. As the first application, the problem of pair tunneling through a weak link on a one-dimensional lattice is solved. It is found that at momenta close to \pi the pair tunnels much easier than one particle, with the transmission coefficient approaching unity. This anomalously high transmission is a consequence of the existence of a two-body resonant state localized at the weak link.Comment: REVTeX, 5 pages, 4 eps figure

    Surface solitons in quasiperiodic nonlinear photonic lattices

    Full text link
    We study discrete surface solitons in semi-infinite, one-dimensional, nonlinear (Kerr), quasiperiodic waveguide arrays of the Fibonacci and Aubry-Andr\'e types, and explore different families of localized surface modes, as a function of optical power content (`nonlinearity') and quasiperiodic strength (`disorder'). We find a strong asymmetry in the power content of the mode as a function of the propagation constant, between the cases of focussing and defocussing nonlinearity, in both models. We also examine the dynamical evolution of a completely-localized initial excitation at the array surface. We find that in general, for a given optical power, a smaller quasiperiodic strength is required to effect localization at the surface than in the bulk. Also, for fixed quasiperiodic strength, a smaller optical power is needed to localize the excitation at the edge than inside the bulk.Comment: 8 pages, 7 figures, submitted for publicatio
    • …
    corecore